1.Application of nanocellulose in flexible sensors.
Peng SUN ; Yunyi DU ; Xubo YUAN ; Xin HOU ; Jin ZHAO
Journal of Biomedical Engineering 2022;39(1):185-191
The shortage of medical resources promotes medical treatment reform, and smart healthcare is a promising strategy to solve this problem. With the development of Internet, real-time health status is expected to be monitored at home by using flexible healthcare systems, which puts forward new demands on flexible substrates for sensors. Currently, the flexible substrates are mainly traditional petroleum-based polymers, which are not renewable. As a natural polymer, cellulose, owing to its wide range of sources, convenient processing, biodegradability and so on, is an ideal alternative. In this review, the application progress of nanocellulose in flexible sensors is summarized. The structure and the modification methods of cellulose and nanocellulose are introduced at first, and then the application of nanocellulose flexible sensors in real-time medical monitoring is summarized. Finally, the advantages and future challenges of nanocellulose in the field of flexible sensors are discussed.
Cellulose/chemistry*
;
Hydrogels/chemistry*
;
Polymers
2.Development of an improved virus plaque assay based on avicel.
Qiaoli LANG ; Nan HUANG ; Liping LI ; Liangpeng GE ; Xi YANG
Chinese Journal of Biotechnology 2022;38(5):1994-2002
Avicel is made of a mixture of microcrystalline cellulose (MCC) and carboxymethyl cellulose (CMC), and used for virus plaque assay. The avicel in common use is produced by FMC Biopolymer. Due to the relatively fixed proportion of MCC and CMC, avicel in common use is not suitable for plaque determination experiment of all types of viruses. In this study, we evaluated the effect of avicel made of different proportions of MCC and CMC on virus plaque assay, and developed an improved avicel virus plaque assay featured with simple and convenient operation, good practicability and high stability. To generate avicel overlays with different proportions of MCC and CMC, twelve different 2×avicel solutions were prepared. Their overall viscosity and bottom viscosity were measured to evaluate the ease of operation. The results showed that most of the 2×avicel solutions (except the 4.8% MCC+1.4% CMC and 4.8% MCC+1.0% CMC group) were easy to absorb and prepare nutrient overlap than 2×CMC solution. In order to find the best scheme to detect the titer of porcine epidemic diarrhea virus (PEDV), these avicel overlay solutions with different proportion of MCC and CMC were used as a replacement in the standard plaque assay. By comparing the size, clarity, stability and titer accuracy of virus plaque, we identified that 0.6% MCC and 0.7% CMC was the most preferable composition of avicel overlay for PEDV plaque assay. In conclusion, we developed an improved virus plaque assay based on avicel, which may facilitate the research of virus etiology, antiviral drugs and vaccines.
Animals
;
Carboxymethylcellulose Sodium/chemistry*
;
Cellulose/chemistry*
;
Swine
3.Study on preparation of ginkgolides component solid dispersions micro pill drug release unit.
Dan LIU ; Zhen-Hai ZHANG ; Xiao-Yun CHEN ; Xiao-Bin JIA
China Journal of Chinese Materia Medica 2014;39(6):1002-1006
Microcrystalline cellulose and chitosan were applied to prepare ginkgolides component solid dispersions micro pill drug release unit and study the dissolution of GKS. Microcrystalline cellulose, chitosan as composite carrier, solvent method was used to prepare ginkgolides component solid dispersions. Differential scanning calorimetry was used to Characterization of ginkgolides component solid dispersions. Ginkgolides component solid dispersions as principle agent were prepared for micro-pellet. Comparison of different types, different doses of the adhesive, drug-polymer interactions, and disintegrating agent for the preparation of ginkgolides components of micro-pellet drug release unit, the optimum preparation ginkgolides components of micro-pellet drug release unit was screened by orthogonal design experiment. Preparation of ginkgolides components solid dispersions with microcrystalline cellulose and chitosan at ratio 1: 3. Drug cumulative dissolution was more than 80% in 60 min. Solid dispersion-micro-pellet drug release unit can significantly improve the dissolution of ginkgolides components, it has practical application value.
Cellulose
;
chemistry
;
Chitosan
;
chemistry
;
Drug Compounding
;
methods
;
Ginkgolides
;
chemistry
4.Progress on cellulosic ethanol produced from beet pulp.
Dan LI ; Lin YUAN ; Meng LI ; Guanhua LI
Chinese Journal of Biotechnology 2016;32(7):880-888
Cellulosic ethanol, with the advantages of renewable resource, cleanliness and safety, is the mainstream of new energy development and has obtained extensive attention worldwide. In this review, the biological characteristics of beets were introduced, and then the superiority and application progress of beets and its by-product sugar beet pulp in the bioethanol production were stated. At last, cellulosic ethanol production coupled with the component separation and comprehensive utilization of beet pulp was proposed.
Beta vulgaris
;
chemistry
;
Biofuels
;
Cellulose
;
chemistry
;
Ethanol
;
chemistry
5.Investigation and optimization on ability of enzymatic hydrolysis of Mori Cortex residue.
Xin-Yao SU ; Chun-Li JIANG ; Ya-Chun XU ; Meng-Chu SUN ; Chen-Hao HUANG ; Jian-Ping XUE ; Cai-Xia WANG
China Journal of Chinese Materia Medica 2018;43(1):86-91
Residue of Mori Cortex was studied to optimize its enzymatic hydrolysis process, and explore its potential as a carbon source for biochemistry and biofuel production. The cellulose content of diluted acid pretreated (DAP) and non-pretreated from Mori Cortex were measured in this study, and the results showed that the cellulose content of DAP and non-pretreated from Mori Cortex were 52.5% and 47%, respectively. This higher cellulose content indicated that residue of Mori Cortex had the potential to act as a carbon source for biochemistry and biofuel production. Enzymatic hydrolysis of pretreated and non-pretreated from Mori Cortex was conducted under different enzyme loading amount. 40 FPU·(g DW)⁻¹ enzyme loading was determined as the optimal amount by comparing the yield of sugar and the rate of enzymolysis. Under this condition, the concentrations of glucose, xylose, arabinose sugar were 23.82, 4.84, 3.6 g·L⁻¹, and the corresponding enzymatic hydrolysis rate was 45.33% which was 2.3 times higher than that of non-pretreated from Morus alba residues. Fed-batch enzymatic hydrolysis was conducted finally to get higher sugar yield, and the final glucose concentration reached up to 38 g·L⁻¹ with the enzymatic hydrolysis rate of 36.19%. The results indicated that Mori Cortex residue had higher cellulose and hemicellulose contents, so it had the potential to become a carbon source to produce the bio-chemicals and biofuels. Through enzymatic hydrolysis, it can be converted into microbial available monosaccharides; and through fermentation, it can be converted into high value-added chemicals, biofuels, etc., to solve the problem of residue pollution, and achieve the sustainable development and greening of Chinese pharmaceutical production process.
Carbohydrates
;
Cellulose
;
chemistry
;
Enzymes
;
metabolism
;
Fermentation
;
Hydrolysis
;
Morus
;
chemistry
6.Quality by design based high shear wet granulation process development for the microcrystalline cellulose.
Gan LUO ; Bing XU ; Fei SUN ; Xiang-long CUI ; Xin-yuan SHI ; Yan-jiang QIAO
Acta Pharmaceutica Sinica 2015;50(3):355-359
The design space of the high shear wet granulation process was established and validated within the framework of quality by design (QbD). The system of microcrystalline cellulose-de-ioned water was used in this study. The median granule size and bulk density of granules were identified as critical quality attributes. Plackeet-Burmann experimental design was used to screen these factors as follows: dry mixing time, the impeller and chopper speed of dry mixing, water amount, water addition time, wet massing time, the impeller and chopper speed of wet massing and drying time. And the optimization was implemented with the central composite experimental design based on screened critical process parameters. The design space of the high shear wet granulation process was established based on the quadratic polynomial regression model. Since the P-values of both models were less than 0.05 and values of lack of fit were more than 0.1, the relationship between critical quality attributes and critical process parameters could be well described by the two models. The reliability of design space, illustrated by overlay plot, was improved with the addition of 95% confidence interval. For those granules whose process parameters were in the design space, the granule size could be controlled within 250 to 355 μm, and the bulk density could be controlled within a range of 0.4 to 0.6 g x cm(-3). The robustness and flexibility of the high shear wet granulation process have been enhanced via the establishment of the design space based on the QbD concept.
Cellulose
;
chemistry
;
Reproducibility of Results
;
Technology, Pharmaceutical
;
methods
;
Water
7.Extraction and purification of acidic polysaccharide from Moerella iridescens.
Wei XIANG ; Xin DING ; Xue-lei ZHANG ; Yuan-yuan WU ; Song-hua CHEN
Journal of Zhejiang University. Medical sciences 2012;41(5):569-575
OBJECTIVETo optimize extraction and purification methods of acidic polysaccharide from Moerella iridescens (MIAP).
METHODSWith alkali extraction process and orthogonal experiment,the time consumption,temperature,pH value of the solution and alcohol concentration during the extraction were optimized. The crude products were deprived of protein,pigment and ion,then were purified with DEAE-cellulose ion-exchange chromatography and verified with Sephadex G-100 and cellulose acetate membrane electrophoresis,and examined with infrared spectrum.
RESULTSThe optimized extraction conditions were as follows: extraction time 6 h,extraction temperature 70 degree,the solution pH 8.0 and the concentration of alcohol precipitation 70%. Intuitive features showed that the MIAP was pure white crystalline granular with slight dark brown color. The purification results demonstrated that the target MIAP was eluted and identified as a homogeneous components by DEAE-cellulose ion exchange column,Sephadex G-100 and cellulose acetate membrane electrophoresis. Infrared spectral scanning suggested that MIAP was α-D-type terminated glucopyranose. Intuitive features showed that MIAP was soft and cottony white.
CONCLUSIONThe extraction process with orthogonal test has been optimized and the acidic polysaccharide from Moerella iridescens is successfully isolated.
Animals ; Bivalvia ; chemistry ; Chromatography, DEAE-Cellulose ; methods ; Polysaccharides ; isolation & purification
8.Evaluating method of the characteristic physical properties of the wetting mass using texture analyser.
Ya GAO ; Yan-long HONG ; Jie-chen XIAN ; Ning ZHANG ; Yi FENG ; Xiu-juan YANG
Acta Pharmaceutica Sinica 2012;47(8):1049-1054
To build the evaluating method of the characteristic physical properties of the wetting mass, this study reported the preparation of wetting mass by adding water into microcrystalline cellulose, and using texture analyser texture profile analysis to test its physical properties, including hardness, adhesiveness, springness, cohesiveness, chewiness, resilience and so on, then finding out the better method and parameters. The method was evaluated and used to test wetting mass, which was made of microcrystalline cellulose of different types and polyvinylpyrrolidone. When running texture profile analysis whose trigger force was 1500 g, the relative standard deviation was under 10%, and the trend of every characteristic physical property tallied with the theory result by water ratio increase. Testing result of the same excipient with the same water ratio had a higher precision, while characteristic physical properties of wetting mass who was made of the same excipient with different water ratios and different excipients had a great difference. Using texture analyser to test physical properties of wetting mass could get a result which tallied with the theory by water ratio increase, and had a well precision, accuracy and sensitivity, and thus it could also evaluate the characteristic physical properties of wetting mass relatively well.
Adhesiveness
;
Cellulose
;
chemistry
;
Excipients
;
chemistry
;
Hardness
;
Povidone
;
chemistry
;
Surface Properties
;
Technology, Pharmaceutical
;
methods
;
Water
;
chemistry
;
Wettability
9.High titer ethanol production from an atmospheric glycerol autocatalytic organosolv pretreated wheat straw.
Liang WANG ; Jianquan LIU ; Zhe ZHANG ; Feiyang ZHANG ; Junli REN ; Fubao SUN ; Zhenyu ZHANG ; Cancan DING ; Qiaowen LIN
Chinese Journal of Biotechnology 2015;31(10):1468-1483
The expensive production of bioethanol is because it has not yet reached the 'THREE-HIGH' (High-titer, high-conversion and high-productivity) technical levels of starchy ethanol production. To cope with it, it is necessary to implement a high-gravity mash bioethanol production (HMBP), in which sugar hydrolysates are thick and fermentation-inhibitive compounds are negligible. In this work, HMBP from an atmospheric glycerol autocatalytic organosolv pretreated wheat straw was carried out with different fermentation strategies. Under an optimized condition (15% substrate concentration, 10 g/L (NH4)2SO4, 30 FPU/g dry matter, 10% (V/V) inoculum ratio), HMBP was at 31.2 g/L with a shaking simultaneous saccharification and fermentation (SSF) at 37 degrees C for 72 h, and achieved with a conversion of 73% and a productivity of 0.43 g/(L x h). Further by a semi-SFF with pre-hydrolysis time of 24 h, HMBP reached 33.7 g/L, the conversion and productivity of which was 79% and 0.47 g/(L x h), respectively. During the SSF and semi-SSF, more than 90% of the cellulose in both substrates were hydrolyzed into fermentable sugars. Finally, a fed-batch semi-SFF was developed with an initial substrate concentration of 15%, in which dried substrate (= the weight of the initial substrate) was divided into three portions and added into the conical flask once each 8 h during the first 24 h. HMBP achieved at 51.2 g/L for 72 h with a high productivity of 0.71 g/(L x h) while a low cellulose conversion of 62%. Interestingly, the fermentation inhibitive compound was mainly acetic acid, less than 3.0 g/L, and there were no other inhibitors detected, commonly furfural and hydroxymethyl furfural existing in the slurry. The data indicate that the lignocellulosic substrate subjected to the atmospheric glycerol autocatalytic organosolv pretreatment is very applicable for HMBP. The fed-batch semi-SFF is effective and desirable to realize an HMBP.
Biofuels
;
Carbohydrates
;
chemistry
;
Cellulose
;
chemistry
;
Ethanol
;
metabolism
;
Fermentation
;
Furaldehyde
;
chemistry
;
Glycerol
;
chemistry
;
Hydrolysis
;
Triticum
10.Formulation optimization of panax notoginsenoside orally fast disintegration tablets.
China Journal of Chinese Materia Medica 2008;33(14):1676-1680
OBJECTIVETo optimize the formulation of panax notoginsenoside orally fast disintegrating tablets.
METHODMannitol, microcrystalline cellulose (PH 102) and lactose 80 were used as diluent. A polynomial regression algorithm was used to evaluate the relationship between the controlling factor, compacting pressure and diluent ratio, and disintegration time, tensile strength of tablets. Optimum formulation and process parameters could be determined by contrast the contour plot of tensile strength to that of disintegration time.
RESULTThe disintegration time and tensile strength of panax notoginsenoside oral disintegrating tablets were good, and the taste was satisfactory.
CONCLUSIONPanax notoginsenoside oral disintegrating tablets achieve the goal of design and this method can be fairly used in formulation screening.
Cellulose ; chemistry ; Chemistry, Pharmaceutical ; methods ; Drugs, Chinese Herbal ; chemistry ; Ginsenosides ; chemistry ; Lactose ; chemistry ; Mannitol ; chemistry ; Tablets ; chemistry ; Tensile Strength