1.Research Progress of Long Non-Coding RNA in Hematological Tumors --Review.
Feng LI ; Fei-Fei YANG ; Yan-Li XU
Journal of Experimental Hematology 2023;31(1):306-310
Long non-coding RNA (lncRNA) is a hot topic in the field of researching tumor pathogenesis, and the importance in hematologic malignancies has been gradually being elucidated. LncRNA not only regulates hematological tumorigenesis and progression through affecting various biological processes such as cell proliferation, differentiation, pluripotency and apoptosis; moreover, abnormal expression and mutation of lncRNA are closely related to drug resistance and prognosis. Thus lncRNA can be used as novel biomarker and potential therapeutic target for hematological tumors. In this review, we will focus on the latest progress of lncRNA in hematological tumors to provide new ideas for the clinical diagnosis, prognostic evaluation together with research and development of target drugs for hematologic malignancies.
Humans
;
RNA, Long Noncoding/metabolism*
;
Hematologic Neoplasms/genetics*
;
Neoplasms
;
Carcinogenesis/pathology*
;
Cell Transformation, Neoplastic/genetics*
;
Gene Expression Regulation, Neoplastic
2.Genetic variation of YWHAE gene-"Switch" of disease control.
Xi JIN ; Minhui DAI ; Yanhong ZHOU
Journal of Central South University(Medical Sciences) 2022;47(1):101-108
YWHAE gene is located on chromosome 17p13.3, and its product 14-3-3epsilon protein belongs to 14-3-3 protein family. As a molecular scaffold, YWHAE participates in biological processes such as cell adhesion, cell cycle regulation, signal transduction and malignant transformation, and is closely related to many diseases. Overexpression of YWHAE in breast cancer can increase the ability of proliferation, migration and invasion of breast cancer cells. In gastric cancer, YWHAE acts as a negative regulator of MYC and CDC25B, which reduces their expression and inhibits the proliferation, migration, and invasion of gastric cancer cells, and enhances YWHAE-mediated transactivation of NF-κB through CagA. In colorectal cancer, YWHAE lncRNA, as a sponge molecule of miR-323a-3p and miR-532-5p, can compete for endogenous RNA through direct interaction with miR-323a-3p and miR-532-5p, thus up-regulating K-RAS/ERK/1/2 and PI3K-AKT signaling pathways and promoting the cell cycle progression of the colorectal cancer. YWHAE not only mediates tumorigenesis as a competitive endogenous RNA, but also affects gene expression through chromosome variation. For example, the FAM22B-YWHAE fusion gene caused by t(10; 17) (q22; p13) may be associated with the development of endometrial stromal sarcoma. At the same time, the fusion transcript of YWHAE and NUTM2B/E may also lead to the occurrence of endometrial stromal sarcoma. To understand the relationship between YWHAE, NUTM2A, and NUTM2B gene rearrangement/fusion and malignant tumor, YWHAE-FAM22 fusion gene/translocation and tumor, YWHAE gene polymorphism and mental illness, as well as the relationship between 17p13.3 region change and disease occurrence. It provides new idea and basis for understanding the effect of YWHAE gene molecular mechanism and genetic variation on the disease progression, and for the targeted for the diseases.
14-3-3 Proteins/metabolism*
;
Breast Neoplasms/genetics*
;
Cell Line, Tumor
;
Cell Proliferation/genetics*
;
Cell Transformation, Neoplastic/genetics*
;
Colorectal Neoplasms/genetics*
;
Endometrial Neoplasms
;
Female
;
Gene Expression Regulation, Neoplastic
;
Humans
;
MicroRNAs/genetics*
;
Phosphatidylinositol 3-Kinases/metabolism*
;
Sarcoma, Endometrial Stromal/pathology*
;
Stomach Neoplasms/genetics*
;
Transcription Factors/genetics*
;
Translocation, Genetic
3.Cancer cells corrupt normal epithelial cells through miR-let-7c-rich small extracellular vesicle-mediated downregulation of p53/PTEN.
Weilian LIANG ; Yang CHEN ; Hanzhe LIU ; Hui ZHAO ; Tingting LUO ; Hokeung TANG ; Xiaocheng ZHOU ; Erhui JIANG ; Zhe SHAO ; Ke LIU ; Zhengjun SHANG
International Journal of Oral Science 2022;14(1):36-36
Tumor volume increases continuously in the advanced stage, and aside from the self-renewal of tumor cells, whether the oncogenic transformation of surrounding normal cells is involved in this process is currently unclear. Here, we show that oral squamous cell carcinoma (OSCC)-derived small extracellular vesicles (sEVs) promote the proliferation, migration, invasion, and epithelial-mesenchymal transition (EMT) of normal epithelial cells but delay their apoptosis. In addition, nuclear-cytoplasmic invaginations and multiple nucleoli are observed in sEV-treated normal cells, both of which are typical characteristics of premalignant lesions of OSCC. Mechanistically, miR-let-7c in OSCC-derived sEVs is transferred to normal epithelial cells, leading to the transcriptional inhibition of p53 and inactivation of the p53/PTEN pathway. In summary, we demonstrate that OSCC-derived sEVs promote the precancerous transformation of normal epithelial cells, in which the miR-let-7c/p53/PTEN pathway plays an important role. Our findings reveal that cancer cells can corrupt normal epithelial cells through sEVs, which provides new insight into the progression of OSCC.
Carcinoma, Squamous Cell/pathology*
;
Cell Line, Tumor
;
Cell Movement
;
Cell Proliferation
;
Cell Transformation, Neoplastic
;
Down-Regulation
;
Epithelial Cells/metabolism*
;
Extracellular Vesicles/pathology*
;
Humans
;
MicroRNAs/metabolism*
;
Mouth Neoplasms/pathology*
;
PTEN Phosphohydrolase/metabolism*
;
Tumor Suppressor Protein p53/metabolism*
4.Interferon-γ regulates cell malignant growth via the c-Abl/HDAC2 signaling pathway in mammary epithelial cells.
Wen-Bo REN ; Xiao-Jing XIA ; Jing HUANG ; Wen-Fei GUO ; Yan-Yi CHE ; Ting-Hao HUANG ; Lian-Cheng LEI
Journal of Zhejiang University. Science. B 2019;20(1):39-48
Interferon-γ (IFN-γ) has been used to control cancers in clinical treatment. However, an increasing number of reports have suggested that in some cases effectiveness declines after a long treatment period, the reason being unclear. We have reported previously that long-term IFN-γ treatment induces malignant transformation of healthy lactating bovine mammary epithelial cells (BMECs) in vitro. In this study, we investigated the mechanisms underlying the malignant proliferation of BMECs under IFN-γ treatment. The primary BMECs used in this study were stimulated by IFN-γ (10 ng/mL) for a long term to promote malignancy. We observed that IFN-γ could promote malignant cell proliferation, increase the expression of cyclin D1/cyclin-dependent kinase 4 (CDK4), decrease the expression of p21, and upregulate the expression of cellular-abelsongene (c-Abl) and histone deacetylase 2 (HDAC2). The HDAC2 inhibitor, valproate (VPA) and the c-Abl inhibitor, imatinib, lowered the expression level of cyclin D1/CDK4, and increased the expression level of p21, leading to an inhibitory effect on IFN-γ-induced malignant cell growth. When c-Abl was downregulated, the HDAC2 level was also decreased by promoted proteasome degradation. These data suggest that IFN-γ promotes the growth of malignant BMECs through the c-Abl/HDAC2 signaling pathway. Our findings suggest that long-term application of IFN-γ may be closely associated with the promotion of cell growth and even the carcinogenesis of breast cancer.
Animals
;
Carcinogenesis/pathology*
;
Cattle
;
Cell Cycle Proteins/metabolism*
;
Cell Proliferation/drug effects*
;
Cell Transformation, Neoplastic/pathology*
;
Cells, Cultured
;
Epithelial Cells/pathology*
;
Female
;
Histone Deacetylase 2/metabolism*
;
Imatinib Mesylate/pharmacology*
;
Interferon-gamma/pharmacology*
;
Mammary Glands, Animal/pathology*
;
Mammary Neoplasms, Experimental/pathology*
;
Proto-Oncogene Proteins c-abl/metabolism*
;
Signal Transduction
;
Valproic Acid/pharmacology*
5.Effects of miR-125a-5p on Cell Proliferation,Apoptosis and Cell Cycle of Pancreatic Cancer Cells.
Cong-Wei JIA ; Yang SUN ; Ting-Ting ZHANG ; Zhao-Hui LU ; Jie CHEN
Acta Academiae Medicinae Sinicae 2016;38(4):415-421
Objective To investigate the effects of miR-125a-5p on cell proliferation,apoptosis and cell cycle of pancreatic cancer cells.Methods The expression level of miR-125a-5p in pancreatic cancer was determined using quantitative real-time polymerase chain reaction analysis in 4 pairs of pancreatic cancer tissues and matched adjacent normal tissues samples. The expression of miR-125a-5p was downregulated in pancreatic cancer cell lines by transfection with miR-125a-5p inhibitor. Cell counting kit-8 assays was conducted to detect the growth ability of pancreatic cancer cell lines. Flow cytometry was applied to detect the cell cycle and apopotosis. Soft agar colony formation test was employed to assess the role of miR-125a-5p in process of malignant transformation.Results MiR-125a-5p was significantly highly expressed in pancreatic ductal adenocarcinoma tissues than adjacent normal tissues(P<0.05). After the expression level of miR-125a-5p in Panc-1 and MIA PaCa-2 was downregulated,the growth ability was suppressed(P<0.05),early apopotosis rate was promoted by 13.6% and 11.0% respectively(P<0.05),the amount of colony formation was reduced by 27.3% and 27.8%,respectively(P<0.05),and the percentage of S stage of Panc-1 was reduced by 11.8% (P<0.05).Conclusions The expression of miR-125a-5p is high in pancreatic ductal adenocarcinoma tissues. After the expression level of miR-125a-5p is downregulated,the growth ability,colony formation,and cell cycle of Panc-1 and MIA PaCa-2 are suppressed,and the early apopotosis rate will be promoted. Therefore,miR-125a-5p may play an oncogenic role in pancreatic ductal adenocarcinoma.
Apoptosis
;
Carcinoma, Pancreatic Ductal
;
pathology
;
Cell Cycle
;
Cell Line, Tumor
;
Cell Proliferation
;
Cell Transformation, Neoplastic
;
Down-Regulation
;
Gene Expression Regulation, Neoplastic
;
Humans
;
MicroRNAs
;
genetics
;
metabolism
;
Pancreatic Neoplasms
;
pathology
6.Activation of KRAS promotes the mesenchymal features of basal-type breast cancer.
Rae Kwon KIM ; Yongjoon SUH ; Ki Chun YOO ; Yan Hong CUI ; Hyeonmi KIM ; Min Jung KIM ; In Gyu KIM ; Su Jae LEE
Experimental & Molecular Medicine 2015;47(1):e137-
Basal-type breast cancers are among the most aggressive and deadly breast cancer subtypes, displaying a high metastatic ability associated with mesenchymal features. However, the molecular mechanisms underlying the maintenance of mesenchymal phenotypes of basal-type breast cancer cells remain obscure. Here, we report that KRAS is a critical regulator for the maintenance of mesenchymal features in basal-type breast cancer cells. KRAS is preferentially activated in basal-type breast cancer cells as compared with luminal type. By loss and gain of KRAS, we found that KRAS is necessary and sufficient for the maintenance of mesenchymal phenotypes and metastatic ability through SLUG expression. Taken together, this study demonstrates that KRAS is a critical regulator for the metastatic behavior associated with mesenchymal features of breast cancer cells, implicating a novel therapeutic target for basal-type breast cancer.
Animals
;
Breast Neoplasms/*genetics/metabolism/pathology
;
Cell Line, Tumor
;
Cell Transformation, Neoplastic/genetics/metabolism
;
Disease Models, Animal
;
Epithelial-Mesenchymal Transition/*genetics
;
Female
;
Gene Expression Regulation, Neoplastic
;
Gene Knockdown Techniques
;
Heterografts
;
Humans
;
Neoplasm Invasiveness
;
Neoplasm Metastasis
;
Phenotype
;
Proto-Oncogene Proteins/*genetics/metabolism
;
*Transcriptional Activation
;
ras Proteins/*genetics/metabolism
7.Correlation of Twist and YB-1 up-regulation and epithelial-mesenchymal transition during tumorigenesis and progression of cervical carcinoma.
Min LI ; Hong GUAN ; Xinrong HU ; E-mail: 10028303731@QQ.COM. ; Ying WANG ; Qian WEI ; Qingfeng YANG
Chinese Journal of Pathology 2015;44(8):594-599
OBJECTIVETo investigate the clinicopathological significance of Twist and YB-1 up-regulation in cervical cancer, and to correlate the expression of the two genes with E-cadherin, a marker of epithelial-mesenchymal transition (EMT).
METHODSA total of 202 tissue samples were collected during January 2008 to December 2013, including 50 cases of normal cervical tissues, 100 cases of cervical intraepithelial neoplasia (CIN) and 52 cases of squamous cell carcinoma (SCC). Twist, YB-1 and E-cadherin expression was investigated by MaxVision.
RESULTSIncreased expression levels of Twist and YB-1 were found and correlated with the malignant transformation of cervical epithelium, histological progression and metastasis of cervical cancer. In addition, Twist and YB-1 overexpression was also associated with aberrant expression of E-cadherin. Regression analysis revealed that Twist expression was an independent factor for the histological progression of cervical cancer.
CONCLUSIONSIt is suggested that Twist and YB-1 overexpression is significantly linked to cervical cancer tumorigenesis and progression, likely related to EMT through (YB-1)-Twist-(E-cadherin) pathway. Twist and YB-1 may be markers for determining the metastatic potential of cervical cancer.
Biomarkers, Tumor ; genetics ; metabolism ; Cadherins ; genetics ; metabolism ; Carcinoma, Squamous Cell ; metabolism ; pathology ; Cell Transformation, Neoplastic ; Cervical Intraepithelial Neoplasia ; metabolism ; pathology ; Disease Progression ; Epithelial-Mesenchymal Transition ; Epithelium ; pathology ; Female ; Gene Expression Regulation, Neoplastic ; Humans ; Nuclear Proteins ; genetics ; metabolism ; Twist-Related Protein 1 ; genetics ; metabolism ; Up-Regulation ; Uterine Cervical Neoplasms ; metabolism ; pathology ; Y-Box-Binding Protein 1 ; genetics ; metabolism
8.Long non-coding RNA Gm15577 is involved in mouse cerebellar neurogenesis.
Yongsong YUE ; Weilong ZHANG ; Chunying LIU ; Yamei NIU ; Weimin TONG
Chinese Journal of Pathology 2015;44(7):504-508
OBJECTIVETo identify novel lncRNAs involved in cerebellar neurogenesis using neuronal specific Nbs1-deficient (Nbs1(CNS-del)) mouse model.
METHODSMicroarray analysis was performed to identify differentially expressed lncRNAs between Nbs1(CNS-ctr) and Nbs1(CNS-del) mice. Expression profiles of lncRNA Gm15577 and coding gene Negr1 in mice, primary cerebellar culture and cell lines were measured using RT-qPCR. Subcellular fractionation was performed to determine the subcellular localization of Gm15577.
RESULTSGm15577 was specifically expressed in mice cerebellum in a developmentally regulated manner, which could be abolished upon Nbs1-deficiency. Gm15577 was located in the intronic region of Negr1 in a reversed orientation. Gm15577 modulated the RNA expression of Negr1, Shh and β-catenin. NEGR1 had a distinct expression pattern between normal and medulloblastoma patients.
CONCLUSIONGm15577 may modulate cerebellar granule cell proliferation and differentiation by targeting Negr1, and their dysfunctions or abnormal expression may be related to tumorigenesis of medulloblastoma.
Animals ; Cell Differentiation ; Cell Proliferation ; Cell Transformation, Neoplastic ; Cerebellar Neoplasms ; pathology ; Cerebellum ; cytology ; physiology ; Disease Models, Animal ; Humans ; Introns ; Medulloblastoma ; pathology ; Mice ; Mice, Knockout ; Neurogenesis ; Neurons ; physiology ; RNA, Long Noncoding ; metabolism
9.Dysplastic nodule of liver versus early hepatocellular carcinoma: a clinicopathologic and prognostic study.
Lingli CHEN ; Yunshan TAN ; Haiying ZENG ; Yingyong HOU ; Jianfang XU ; Jing ZHAO ; Yuan JI
Chinese Journal of Pathology 2014;43(5):301-306
OBJECTIVETo study the clinical features, pathologic findings and prognosis of patients with dysplastic nodules of liver (DN) and early hepatocellular carcinomas (eHCC).
METHODSOne hundred and forty-five archival cases previously diagnosed as DN or eHCC or well-differentiated HCC during the period from 2000 to 2009 were retrieved and reevaluated with the new diagnostic criteria by two experienced pathologists, according to International Consensus Group for Hepatocellular Neoplasia (ICGHN) 2008. Immunohistochemical study (EnVision method) for CD34, HSP70, glutamine synthetase, glypican 3 and Ki-67 was carried out. The original diagnosis and diagnosis after review were compared and correlated with the survival data of the patients, with statistical analysis.
RESULTSWith the new criteria, 16 cases were diagnosed as low-grade DN, 50 cases as high-grade DN, 72 cases as DN with microinvasion, 7 cases as advanced HCC. Slide review showed no diagnostic discrepancy in 112 cases (77.2%). Amongst the 33 (22.8%) underdiagnosed cases, there were 7 cases of advanced HCC initially diagnosed as DN or DN with microinvasion and 26 cases of eHCC initially diagnosed as high-grade DN. Kaplan-Meier analysis showed that the diagnosis of high-grade DN or early HCC carried no statistically significant difference in overall survival (P = 0.778, 0.677) or disease-free survival (P = 0.949, 0.700) in all patients and in patients with no history of HCC. The co-existence of advanced HCC in patients with DN or eHCC significantly correlated with overall survival (P = 0.004) but not with disease-free survival (P = 0.079).
CONCLUSIONSThe new diagnostic criteria by ICGHN 2008 are useful in delineating high-grade DN and eHCC. The overall survival and disease-free survival of patients with eHCC or high-grade DN undergoing hepatectomy show no statistically significant difference. Patients with DN or eHCC have better prognosis than patients with advanced HCC, though there is still a high risk of tumor recurrence.
Antigens, CD34 ; metabolism ; Carcinoma, Hepatocellular ; metabolism ; pathology ; surgery ; Cell Transformation, Neoplastic ; Disease-Free Survival ; Female ; Follow-Up Studies ; HSP70 Heat-Shock Proteins ; metabolism ; Hepatectomy ; Humans ; Kaplan-Meier Estimate ; Ki-67 Antigen ; metabolism ; Liver Cirrhosis ; metabolism ; pathology ; surgery ; Liver Neoplasms ; metabolism ; pathology ; surgery ; Male ; Middle Aged ; Survival Rate
10.The role of maintenance proteins in the preservation of epithelial cell identity during mammary gland remodeling and breast cancer initiation.
Chinese Journal of Cancer 2014;33(2):51-67
During normal postnatal mammary gland development and adult remodeling related to the menstrual cycle, pregnancy, and lactation, ovarian hormones and peptide growth factors contribute to the delineation of a definite epithelial cell identity. This identity is maintained during cell replication in a heritable but DNA-independent manner. The preservation of cell identity is fundamental, especially when cells must undergo changes in response to intrinsic and extrinsic signals. The maintenance proteins, which are required for cell identity preservation, act epigenetically by regulating gene expression through DNA methylation, histone modification, and chromatin remodeling. Among the maintenance proteins, the Trithorax (TrxG) and Polycomb (PcG) group proteins are the best characterized. In this review, we summarize the structures and activities of the TrxG and PcG complexes and describe their pivotal roles in nuclear estrogen receptor activity. In addition, we provide evidence that perturbations in these epigenetic regulators are involved in disrupting epithelial cell identity, mammary gland remodeling, and breast cancer initiation.
Animals
;
Breast Neoplasms
;
genetics
;
pathology
;
physiopathology
;
Cell Transformation, Neoplastic
;
Chromatin
;
genetics
;
metabolism
;
Epigenesis, Genetic
;
physiology
;
Epithelial Cells
;
cytology
;
Female
;
Gene Expression Profiling
;
Gene Expression Regulation, Developmental
;
Histone-Lysine N-Methyltransferase
;
Humans
;
Mammary Glands, Animal
;
cytology
;
growth & development
;
Mammary Glands, Human
;
cytology
;
growth & development
;
Myeloid-Lymphoid Leukemia Protein
;
genetics
;
physiology
;
Polycomb-Group Proteins
;
genetics
;
physiology
;
Receptors, Estrogen
;
metabolism

Result Analysis
Print
Save
E-mail