2.ERK signaling pathway mediated epithelial-mesenchymal transition induced by SiO₂ in human bronchial epithelial cells.
Zhenqin GAO ; Yongbin HU ; Jingwu PENG ; Zhenghao DENG ; Guannan LIANG ; Haiying JIANG ; Jianhua ZHOU
Journal of Central South University(Medical Sciences) 2011;36(11):1085-1089
OBJECTIVE:
To determine the role of extracellular signal regulated kinase (ERK) signaling pathway in SiO₂ induced epithelial-mesenchymal transition (EMT) in human bronchial epithelial cells (HBEC) in vitro.
METHODS:
HBEC were treated with SiO₂ (0-300 μg/mL) for 72 h or pretreated with U0126 (0-30 μmol/L) for 1 h and then treated with 200 μg/mL SiO₂ for 72 h. Western blot was used to detect the protein expression of E-cadherin and α-smooth muscle actin (α-SMA). The activity of ERK was examined by mitogen-activated protein kinase (MAPK) activity assay kit in HBEC exposing to SiO₂ (200 μg/mL) for 0-8 h.
RESULTS:
The expression of E-cadherin decreased gradually in SiO₂ -stimulated HBEC, and the effect was most significant at 300 μg/mL (P<0.01). The expression of α-SMA increased and the effect was most evident at 200 μg/mL (P<0.01). With SiO₂ treatment, the activity of ERK was upregulated significantly. The phosphorylation of ERK increased at 30 min and decreased after 1 h. U0126 significantly inhibited SiO₂ -induced expression changes in E-cadherin and α-SMA. At 30 μmol/L, the effect was most evident(P<0.01).
CONCLUSION
ERK signaling pathway mediated EMT induced by SiO₂ in HBEC.
Actins
;
metabolism
;
Bronchi
;
cytology
;
Cadherins
;
metabolism
;
Cell Transdifferentiation
;
drug effects
;
Cells, Cultured
;
Epithelial Cells
;
cytology
;
physiology
;
Epithelial-Mesenchymal Transition
;
Humans
;
MAP Kinase Signaling System
;
physiology
;
Mitogen-Activated Protein Kinases
;
metabolism
;
Silicon Dioxide
;
pharmacology
3.A study on the transdifferentiation of adipose mesenchymal stem cells into hepatocytes.
Zhan LIU ; Ze-ya SHI ; Hui-xin ZHOU ; Ming-hao WU ; Zhou-jun SHE ; Yi-ni LI
Chinese Journal of Hepatology 2007;15(8):601-604
OBJECTIVETo investigate the possibility of transdifferentiation of adipose mesenchymal stem cells (AMSCs) into hepatocytes.
METHODSHuman omentum adipose tissue was dispersed with collagenase I. Cells collected were cultured in a DMEM-F12 medium containing 2% FBS supplemented with 20 ng/ml HGF, 10 ng/ml FGF4, 1xITS and 0.1 micromol/L dexasmison. The cells of the control group were also cultured in the same kind of medium but without any cytokines serving as a control. The expression of hepatic transcriptional factors such as GATA4 and HNF1 were checked by RT-PCR. At the end of the induction, hepatocyte markers were analysed by flow cytometry, and cytokeratin expressions were examined using cyto-immunofluorescence methods.
RESULTSAMSCs grew like fibroblasts and were passaged easily. Most of the third passaged AMSCs were positive against anti-CD29, anti-CD44 antibodies, but negative for the anti-CD34 and anti-CD45 ones. The hepatic transcriptional factor was expressed gradually to higher levels during the induction time. AFP and Alb positive cells were 30.0% and 17.8% of the total cultured cells, and the rate of cells positive to the two markers was 6.9%. The inducted cells were positive for CK18 and CK19 antibodies at the end of the induction. The cells in the control group were negative when checked by these methods.
CONCLUSIONSAMSCs could be directed to differentiate into hepatocytes in vitro by a cytokine cocktail with a low concentration FBS culture system.
Adipocytes ; cytology ; Cell Differentiation ; Cell Transdifferentiation ; Cells, Cultured ; Hepatocytes ; cytology ; Humans ; Mesenchymal Stromal Cells ; cytology
4.Progress in stem cells and regenerative medicine.
Libin WANG ; He ZHU ; Jie HAO ; Qi ZHOU
Chinese Journal of Biotechnology 2015;31(6):871-879
Stem cells have the ability to differentiate into all types of cells in the body and therefore have great application potential in regenerative medicine, in vitro disease modelling and drug screening. In recent years, stem cell technology has made great progress, and induced pluripotent stem cell technology revolutionizes the whole stem cell field. At the same time, stem cell research in our country has also achieved great progress and becomes an indispensable power in the worldwide stem cell research field. This review mainly focuses on the research progress in stem cells and regenerative medicine in our country since the advent of induced pluripotent stem cell technology, including induced pluripotent stem cells, transdifferentiation, haploid stem cells, and new gene editing tools.
Cell Transdifferentiation
;
Humans
;
Induced Pluripotent Stem Cells
;
Pluripotent Stem Cells
;
Regenerative Medicine
;
trends
;
Stem Cells
5.Differentiation of human umbilical cord derived mesenchymal stem cells into low immunogenic and functional hepatocyte-like cells in vitro.
Hong-ying REN ; Qin-jun ZHAO ; Wen XING ; Shao-guang YANG ; Shi-hong LU ; Qian REN ; Lei ZHANG ; Zhong-chao HAN
Acta Academiae Medicinae Sinicae 2010;32(2):190-194
OBJECTIVETo investigate the biological function of hepatocyte-like cells derived from mesenchymal stem cells that isolated from human umbilical cord UC-MSCs in vitro, and to detect the changes in the immunogenicity of the differentiated hepatocyte-like cells (DHC).
METHODSTransdifferentiation of UC-MSCs into hepatic lineage in vitro was induced in modified two-step induction medium. The expressions of hepatic specific markers were detected by RT-PCR analysis and immunofluorescence staining at different time points after induction. The levels of albumin and urea in the supernatants of cultures were measured by enzyme-linked immunosorbent assay. Furthermore, the immunosuppressive property of DHC was detected by one-way mixed lymphocyte culture.
RESULTSThe mRNA and proteins of alpha fetoprotein (AFP), albumin (ALB),and cytokeratin-19 (CK-19) were expressed in naive UC-MSCs at low levels. DHC highly expressed hepatic markers AFP, ALB, CK-19, and tryptophan 2, 3-dioxygenase 14 and 28 days after hepatic differentiation and were accompanied by an increased production of ALB and urea in supernatant in a time-dependent manner. DHC did not express human leukocyte antigen DR antigen and significantly decreased the lymphocyte proliferation.
CONCLUSIONUC-MSCs are able to differentiate into functional hepatocyte-like cells in vitro, while the immunogenicity of DHC remains low.
Cell Transdifferentiation ; Cells, Cultured ; Hepatocytes ; cytology ; immunology ; Humans ; Mesenchymal Stromal Cells ; cytology ; Umbilical Cord ; cytology
6.Progress on in situ cell transdifferentiation in central nervous system.
Hong-Tao WANG ; Yi-Zhe LI ; Qi-Ran FU ; Meng-Yi ZHANG ; Hu LI
Acta Physiologica Sinica 2019;71(4):597-603
Central nervous system injury leads to irreversible neuronal loss and glial scar formation, which ultimately results in persistent neurological dysfunction. Regenerative medicine suggests that replenishing missing neurons may be an ideal approach to repair the damage. Recent researches showed that many mature cells could be transdifferentiated into functional neurons by reprogramming. Therefore, reprogramming endogenous glia in situ to produce functional neurons shows great potential and unique advantage for repairing neuronal damage and treating neurodegenerative diseases. The present review summarized the current research progress on in situ transdifferentiation in the central nervous system, focusing on the cell types, characteristics and research progress of glial cells that could be transdifferentiated in situ, in order to provide theoretical basis for the development of new therapeutic strategies of neuronal injury and further clinical application.
Cell Transdifferentiation
;
Cellular Reprogramming
;
Central Nervous System
;
cytology
;
Humans
;
Neurodegenerative Diseases
;
Neuroglia
;
cytology
;
Neurons
;
cytology
7.Differentiated embryonic chondrocyte gene 2 (DEC2) inhibits transdifferentiation of mouse glomerular endothelial cells and renal fibrosis by blocking TGF-β/ROCK1 signaling pathway.
Xiuhua YIN ; Li CHEN ; Fanwei MENG ; Ying JIANG
Chinese Journal of Cellular and Molecular Immunology 2023;39(9):816-823
Objective To explore the protective mechanism of transdifferentiation of glomerular endothelial cells based on the differentiated embryonic chondrocyte gene 2 (DEC2) via the TGF-β/ROCK1 signaling pathway. Methods The 24 mice were randomly divided into sham group, UUO group, UUO combined with vector group and UUO combined with DEC2 group, with 6 mice in each group. A unilateral ureteral obstruction (UUO) model was established in each group, except for the sham group. In the UUO combined with vector group and UUO combined with DEC2 group, 10 μL (108 PFU) of vector or DEC2 was injected into each kidney on day 0 (immediately after UUO) under the guidance of the ultrasound system. The mice were sacrificed 14 days after the operation, and the kidneys were collected for histological examination and Western blot analysis: HE staining was used to observe the histological changes of kidneys, Masson staining to observe the renal fibrosis, and Western blot analysis to detect the protein expression. In vitro, normal human glomerular endothelial cells (GEnCs) was selected as the research objects. GEnCs stimulated with TGF-β were treated with ROCK1 inhibitor Y-27632 or DEC2 transfection. Western blot analysis was used to detect the expression of ROCK1, α-SMA, DEC2 and E-cadherin in GEnC exposed to transforming growth factor β (TGF-β). The localization of ROCK1 and DEC2 in GEnCs cells was detected by immunofluorescence cytochemistry. The relationship between the ROCK1 and DEC2 was confirmed by co-immunoprecipitation. Results Compared with the sham group, the UUO groups showed significant renal fibrosis and collagen accumulation on the 14th day. In the UUO groups, the expression of DEC2 and E-cadherin in the kidney tissue of the mice was significantly reduced, and the expression of α-SMA significantly increased. Compared with the UUO combined with vector group, the kidney fibrosis and collagen accumulation in the UUO combined with DEC2 group decreased, and the expression of ROCK1 and α-SMA decreased and the expression of DEC2 and E-cadherin increased in the kidney tissue. TGF-β enhanced the expression of ROCK1 and α-SMA in GEnCs cells in a time-dependent manner, and the levels of DEC2 and E-cadherin decreased. Treatment with the ROCK1 inhibitor Y-27632 partially abrogated the TGF-β-induced increase in the expression of ROCK1 and α-SMA and decrease in the expression of DEC2 and E-cadherin. In addition, transfection of GEnCs cells with DEC2 before TGF-β stimulation reduced the expression of ROCK1 and α-SMA, and increased the expression of DEC2 and E-cadherin. Immunofluorescence cytochemical staining showed that DEC2 co-localized with ROCK1 in GEnCs, and the co-immunoprecipitation showed that DEC2 and ROCK1 pulled down each other. Conclusions DEC2 is down-regulated in fibrotic renal tissue, while up-regulated DEC2 inhibits epithelial myofibroblast transdifferentiation and renal fibrosis of GEnC by blocking TGF-β/ROCK1 signaling pathway.
Humans
;
Animals
;
Mice
;
Cell Transdifferentiation
;
Chondrocytes
;
Endothelial Cells
;
Cadherins
;
Signal Transduction
;
rho-Associated Kinases
8.Isolation of human amniotic mesenchymal cells and their differentiation potential into islet-like cells in vitro.
Lin PENG ; Jian WANG ; Guang-xiu LU
Journal of Southern Medical University 2011;31(1):5-10
OBJECTIVETo isolate human amniotic mesenchymal cells (hAMCs) and investigate their transdifferentiation ability into islet-like cells in vitro.
METHODSHuman amnion was treated with the trypsin/EDTA to remove the amniotic epithelial cells and then incubated with collagenase I and dispase at 37 degrees celsius; overnight. The cells were collected by centrifugation and identified for the expressions of vimentin and SSEA-4 using immunofluorescence assay and for CD29, CD90, CD34, and CD45 using flow cytometry. RT-PCR was performed to detect the expressions of ACTG2, ACTA2, MMP2, Cripto, Sox2, LEFTYA, nanog, and Oct-4 in the cells. The differentiation potential of the isolated cells into inslet-like cells was assessed after a 14-day induction with the inducing factors by RT-PCR and immunofluorescence assay.
RESULTSThe hAMCs were capable of in vitro proliferation and passaging for 10 passages while retaining the normal karyotype. The isolated cells were positive for staining of vimentin and SSEA-4 and negative for CD34 and CD45; the CD29 and CD90 cells accounted for (91.5∓9.93)% and (48.7∓9.47)% of the cells, respectively. The hAMCs expressed several pluripotency-related genes, including Cripto, Sox2, LEFTYA, nanog, and Oct-4. After induction, endocrine-related genes were expressed in the islet-like cells, including PDX1, ngn3, insulin and glucagon.
CONCLUSIONWe have successfully established the method for isolating hAMCs, which possess the potential of differentiation into islet-like cells in vitro.
Amnion ; cytology ; Cell Culture Techniques ; methods ; Cell Transdifferentiation ; physiology ; Cells, Cultured ; Female ; Humans ; Islets of Langerhans ; cytology ; Mesenchymal Stromal Cells ; cytology
9.Fallopian Metaplastic Papillary Tumour: An Atypical Transdifferentiation of the Tubal Epithelium?.
Miguel Fdo SALAZAR ; Isaias Estrada MOSCOSO ; Lorena Troncoso VAZQUEZ ; Nubia Leticia LOPEZ GARCIA ; Paola Andrea ESCALANTE ABRIL
Journal of Pathology and Translational Medicine 2015;49(2):148-155
A metaplastic papillary tumor of the Fallopian tube is an extremely uncommon condition, with odd and confusing features that make it difficult to categorize as benign or borderline. Here, we summarize all the published cases to date and document the case of a 41-year-old woman diagnosed with this alteration after her last childbirth and ensuing tubal ligation. One of the tubes was bulky and filled with a caramel-like substance encircling a blurry spot. Light microscopy detailed a slender stalk covered by eosinophilic, columnar plump cells, showing atypical nuclei and focal budding. Mitotic figures were absent. The immunohistochemistry panel was positive for pan-cytokeratin, epithelial membrane antigen, cyclin D1, and hormone receptors. Additionally, a proliferation index of less than 5% was rated using Ki-67. The true nature of this tumor (reactive vs neoplastic) is uncertain. Nonetheless, its association with pregnancy suggests an adaptive change, likely similar to the atypical transdifferentiation proposed for Arias-Stella reaction.
Adult
;
Cell Transdifferentiation
;
Cyclin D1
;
Eosinophils
;
Epithelium*
;
Fallopian Tubes
;
Female
;
Humans
;
Immunohistochemistry
;
Microscopy
;
Mucin-1
;
Parturition
;
Pregnancy
;
Sterilization, Tubal
10.Protein expression in silica dust-induced transdifferentiated rats lung fibroblasts.
Chang Fu HAO ; Xiao Fang LI ; Wu YAO
Biomedical and Environmental Sciences 2013;26(9):750-758
OBJECTIVETo analyze the expression of different proteins in free silica-induced transdifferentiated rat lung fibroblasts.
METHODSRat lung fibroblasts and alveolar macrophages were cultured. A transdifferentiation model of rat lung fibroblasts was established. Free silica was used as a stimulator for rat lung fibroblasts. Changes in α-SMA were detected by immunohistochemistry and Western blot, respectively. Protein of lung fibroblasts was extracted and analyzed by two-dimensional electrophoresis (2-DE).
RESULTSSix protein spots were identified by mass spectrometry, including glyceraldehyde 3-phosphate-dehydrogenase, peroxiredoxin 5, heterogeneous nuclear ribonucleoprotein A2, transgelin 2, keratin K6 and vimentin.
CONCLUSIONSome proteins are changed in free silica-induced transdifferentiated rat lung fibroblasts.
Animals ; Cell Transdifferentiation ; Electrophoresis, Gel, Two-Dimensional ; Fibroblasts ; metabolism ; Macrophages, Alveolar ; physiology ; Male ; Rats ; Silicon Dioxide ; Silicosis ; etiology