1.Influence of dexamethasone on the cell polarity and PAR complex of the embryonic epithelial cells in the palate.
Ma LI ; Shi BING ; Zheng QIAN
West China Journal of Stomatology 2018;36(1):9-16
OBJECTIVE:
This study aims to investigate whether dexamethasone (DEX) can down-regulate the PAR complex and disrupt the cell polarity in the palatal epithelium during palatal fusion.
METHODS:
Pregnant rats were randomly divided into control and DEX groups, which were injected intraperitoneally with 0.9% sodium chloride (0.1 mL) and DEX (6 mg·kg ⁻¹), respectively, every day from E10 to E12. The palatal epithelial morphology was observed using hematoxylin and eosin staining and scanning electron microscopy. Immunofluorescence staining, Western Blot analysis, and real-time polymerase chain reaction were performed to detect the expression of PAR3, PAR6, and aPKC.
RESULTS:
The incidence of cleft palate in DEX group (46.15%) was significantly higher than that in control group (3.92%), and the difference was statistically significant (χ2=24.335, P=0.00). DEX can also retard the growth of the palatal shelves and the short palatal shelves. The morphology and arrangement of MEE cells changed from polarized bilayer cells to nonpolarized monolayer ones. Additionally, the spherical structure decreased, which caused the cleft palate. PAR3 and PAR6 were only detected in the palatal epithelium, and aPKC was expressed in the palatal epithelium and mesenchyme. DEX can reduce the expression levels of PAR3, PAR6, and aPKC in the protein and gene levels.
CONCLUSIONS
DEX can down-regulate the complex gene expression in the MEE cells, thereby destroying the cell polarity and causing cleft palate.
Animals
;
Carrier Proteins
;
physiology
;
Cell Polarity
;
drug effects
;
Cleft Palate
;
etiology
;
Dexamethasone
;
pharmacology
;
Epithelial Cells
;
drug effects
;
Female
;
Glucocorticoids
;
pharmacology
;
Palate
;
Pregnancy
;
Rats
2.Effects of estrogen receptor GPR30 agonist G1 on neuronal apoptosis and microglia polarization in traumatic brain injury rats.
Meng-Xian PAN ; Jun-Chun TANG ; Rui LIU ; Yu-Gong FENG ; Qi WAN
Chinese Journal of Traumatology 2018;21(4):224-228
PURPOSETo investigate the effects of estrogen G protein-coupled receptor 30 (GPR30) agonist G1 on hippocampal neuronal apoptosis and microglial polarization in rat traumatic brain injury (TBI).
METHODSMale SD rats were randomly divided into sham group, TBI + vehicle group, TBI + G1 group. Experimental moderate TBI was induced using Feeney's weigh-drop method. G1 (100μg/kg) or vehicle was intravenously injected from femoral vein at 30 min post-injury. Rats were sacrificed at 24 h after injury for detection of neuronal apoptosis and microglia polarization. Neuronal apoptosis was assayed by immunofluorescent staining of active caspase-3. M1 type microglia markers (iNOS and IL-1β) and M2 type markers (Arg1 and IL-4) were examined by immunoblotting or ELISA. Total protein level of Akt and phosphorylated Akt were assayed by immunoblotting.
RESULTSG1 significantly reduced active caspase-3 positive neurons in hippocampus. Meanwhile G1 increased the ratio of Arg1/iNOS. IL-1β production was decreased but IL-4 was increased after G1 treatment. G1 treatment also increased the active form of Akt.
CONCLUSIONSGPR30 agonist G1 inhibited neuronal apoptosis and favored microglia polarization to M2 type.
Animals ; Apoptosis ; drug effects ; Brain Injuries, Traumatic ; drug therapy ; pathology ; Cell Polarity ; Hippocampus ; drug effects ; Interleukin-1beta ; biosynthesis ; Male ; Microglia ; drug effects ; Neurons ; drug effects ; Proto-Oncogene Proteins c-akt ; metabolism ; Rats ; Rats, Sprague-Dawley ; Receptors, G-Protein-Coupled ; agonists
3.Total flavonoid from Glycyrrhizae Radix et Rhizoma and its ingredient isoliquiritigenin regulation M2 phenotype polarization of macrophages.
Yuan-lai WANG ; Xi TAN ; Xiao-lu YANG ; Xiao-yun LI ; Ka BIAN ; Dan-dan ZHANG
China Journal of Chinese Materia Medica 2015;40(22):4475-4481
To study the mechanisms of total flavonoid from Glycyrrhizae Radix et Rhizoma (TFGR) and its ingredient isoliquiritigenin (ISL) on their regulation of M2 phenotype polarization of macrophages. IL-4 (60 μg x L(-1)) induced RAW264.7 cells for 6 h to establish the M2 macrophage model. TFGR and ISL restrained breast cancer cells migration with the aid of M2 macrophages in vitro. TFGR and ISL inhibited gene and protein expression of Arg-1, up-regulated gene of HO-1 and protein expression of iNOS, enhanced the expression of microRNA 155 and its target gene SHIP1, meanwhile down-regulated.the phosphorylation of STAT3 and STAT6. So TFGR and ISL were the bioactive fraction and ingredient in Glycyrrhizae Radix et Rhizoma to reverse M2 phenotype macrophages polarization. TFGR and ISL inhibited the promotion of M2 macrophages to breast cancer cells migration in vitro, STAT signal pathways and miR155 were partly involved.
Animals
;
Cell Line, Tumor
;
Cell Movement
;
drug effects
;
Cell Polarity
;
drug effects
;
Chalcones
;
pharmacology
;
Flavonoids
;
pharmacology
;
Glycyrrhiza
;
chemistry
;
Interleukin-4
;
genetics
;
metabolism
;
Macrophages
;
cytology
;
drug effects
;
metabolism
;
Mice
;
RAW 264.7 Cells
;
Rhizome
;
chemistry
4.Astragaloside Ⅳ inhibits inflammation after cerebral ischemia in rats through promoting microglia/macrophage M2 polarization.
Xintian ZHENG ; Haiyan GAN ; Lin LI ; Xiaowei HU ; Yan FANG ; Lisheng CHU
Journal of Zhejiang University. Medical sciences 2020;49(6):679-686
OBJECTIVE:
To investigate the effects of astragaloside Ⅳ (AS-Ⅳ) on microglia/macrophage M1/M2 polarization and inflammatory response after cerebral ischemia in rats.
METHODS:
Forty eight male SD rats were randomly divided into sham operation control group, model control group and AS-Ⅳ group with 16 rats in each. Focal cerebral ischemia model was induced by occlusion of the right middle cerebral artery (MCAO) using the intraluminal filament. After ischemia induced, the rats in AS-Ⅳ group were intraperitoneally injected with 40 mg/kg AS-Ⅳ once a day for 3 days. The neurological functions were evaluated by the modified neurological severity score (mNSS) and the corner test on d1 and d3 after modelling. The infarct volume was measured by 2, 3, 5-triphenyl tetrazolium chloride (TTC) staining on d3 after ischemia. The expression of M1 microglia/macrophage markers CD86, inducible nitric oxide synthase (iNOS) and pro-inflammatory factors TNF-α, IL-1β, IL-6, M2 microglia/macrophages markers CD206, arginase-1 (Arg-1), chitinase-like protein (YM1/2) and anti-inflammatory factors interleukin-10 (IL-10) and transforming growth factor beta (TGF-β) was detected by real-time RT-PCR. The expression of CD16/32/Iba1 and CD206/Iba1 was determined by double labeling immunefluorescence method in the peripheral area of cerebral ischemia.
RESULTS:
Compared with model control group, AS-Ⅳ treatment improved neurological function recovery and reduced infarct volume after ischemia (
CONCLUSIONS
The findings suggest that AS-Ⅳ ameliorates brain injury after cerebral ischemia in rats, which may be related to inhibiting inflammation through promoting the polarization of the microglia/macrophage from M1 to M2 phenotype in the ischemic brain.
Animals
;
Anti-Inflammatory Agents/therapeutic use*
;
Brain Ischemia/drug therapy*
;
Cell Polarity/drug effects*
;
Inflammation/drug therapy*
;
Macrophages/drug effects*
;
Male
;
Microglia/drug effects*
;
Random Allocation
;
Rats
;
Rats, Sprague-Dawley
;
Saponins/therapeutic use*
;
Triterpenes/therapeutic use*
5.Different uptake of gentamicin through TRPV1 and TRPV4 channels determines cochlear hair cell vulnerability.
Jeong Han LEE ; Channy PARK ; Se Jin KIM ; Hyung Jin KIM ; Gi Su OH ; Aihua SHEN ; Hong Seob SO ; Raekil PARK
Experimental & Molecular Medicine 2013;45(3):e12-
Hair cells at the base of the cochlea appear to be more susceptible to damage by the aminoglycoside gentamicin than those at the apex. However, the mechanism of base-to-apex gradient ototoxicity by gentamicin remains to be elucidated. We report here that gentamicin caused rodent cochlear hair cell damages in a time- and dose-dependent manner. Hair cells at the basal turn were more vulnerable to gentamicin than those at the apical turn. Gentamicin-conjugated Texas Red (GTTR) uptake was predominant in basal turn hair cells in neonatal rats. Transient receptor potential vanilloid 1 (TRPV1) and 4 (TRPV4) expression was confirmed in the cuticular plate, stereocilia and hair cell body of inner hair cells and outer hair cells. The involvement of TRPV1 and TRPV4 in gentamicin trafficking of hair cells was confirmed by exogenous calcium treatment and TRPV inhibitors, including gadolinium and ruthenium red, which resulted in markedly inhibited GTTR uptake and gentamicin-induced hair cell damage in rodent and zebrafish ototoxic model systems. These results indicate that the cytotoxic vulnerability of cochlear hair cells in the basal turn to gentamicin may depend on effective uptake of the drug, which was, in part, mediated by the TRPV1 and TRPV4 proteins.
Animals
;
Cell Death/drug effects
;
Cell Polarity/drug effects
;
Cell Survival/drug effects
;
Dose-Response Relationship, Drug
;
Gadolinium/metabolism
;
Gentamicins/*metabolism/pharmacology
;
Hair Cells, Auditory/drug effects/*metabolism
;
Hair Cells, Auditory, Inner/drug effects/metabolism
;
Rats
;
Rats, Sprague-Dawley
;
Ruthenium Red/metabolism
;
TRPV Cation Channels/*metabolism
;
Time Factors
;
Xanthenes/metabolism
;
Zebrafish
6.Disruption of Planar Cell Polarity Pathway Attributable to Valproic Acid-Induced Congenital Heart Disease through Hdac3 Participation in Mice.
Hong-Yu DUAN ; Kai-Yu ZHOU ; Tao WANG ; Yi ZHANG ; Yi-Fei LI ; Yi-Min HUA ; Chuan WANG
Chinese Medical Journal 2018;131(17):2080-2088
Background:
Valproic acid (VPA) exposure during pregnancy has been proven to contribute to congenital heart disease (CHD). Our previous findings implied that disruption of planar cell polarity (PCP) signaling pathway in cardiomyocytes might be a factor for the cardiac teratogenesis of VPA. In addition, the teratogenic ability of VPA is positively correlated to its histone deacetylase (HDAC) inhibition activity. This study aimed to investigate the effect of the VPA on cardiac morphogenesis, HDAC1/2/3, and PCP key genes (Vangl2/Scrib/Rac1), subsequently screening out the specific HDACs regulating PCP pathway.
Methods:
VPA was administered to pregnant C57BL mice at 700 mg/kg intraperitoneally on embryonic day 10.5. Dams were sacrificed on E15.5, and death/absorption rates of embryos were evaluated. Embryonic hearts were observed by hematoxylin-eosin staining to identify cardiac abnormalities. H9C2 cells (undifferentiated rat cardiomyoblasts) were transfected with Hdac1/2/3 specific small interfering RNA (siRNA). Based on the results of siRNA transfection, cells were transfected with Hdac3 expression plasmid and subsequently mock-treated or treated with 8.0 mmol/L VPA. Hdac1/2/3 as well as Vangl2/Scrib/Rac1 mRNA and protein levels were determined by real-time quantitative polymerase chain reaction and Western blotting, respectively. Total HDAC activity was detected by colorimetric assay.
Results:
VPA could induce CHD (P < 0.001) and inhibit mRNA or protein expression of Hdac1/2/3 as well as Vangl2/Scrib in fetal hearts, in association with total Hdac activity repression (all P < 0.05). In vitro, Hdac3 inhibition could significantly decrease Vangl2/Scrib expression (P < 0.01), while knockdown of Hdac1/2 had no influence (P > 0.05); VPA exposure dramatically decreased the expression of Vanlg2/Scrib together with Hdac activity (P < 0.01), while overexpression of Hdac3 could rescue the VPA-induced inhibition (P > 0.05).
Conclusion
VPA could inhibit Hdac1/2/3, Vangl2/Scrib, or total Hdac activity both in vitro and in vivo and Hdac3 might participate in the process of VPA-induced cardiac developmental anomalies.
Animals
;
Cell Polarity
;
Enzyme Inhibitors
;
adverse effects
;
Female
;
Fetal Heart
;
embryology
;
Heart Defects, Congenital
;
chemically induced
;
physiopathology
;
Histone Deacetylase Inhibitors
;
Histone Deacetylases
;
drug effects
;
physiology
;
Mice
;
Mice, Inbred C57BL
;
Nerve Tissue Proteins
;
Pregnancy
;
Rats
;
Transfection
;
Valproic Acid
;
adverse effects
7.RBP-J is required for M2 macrophage polarization in response to chitin and mediates expression of a subset of M2 genes.
Julia FOLDI ; Yingli SHANG ; Baohong ZHAO ; Lionel B IVASHKIV ; Xiaoyu HU
Protein & Cell 2016;7(3):201-209
Development of alternatively activated (M2) macrophage phenotypes is a complex process that is coordinately regulated by a plethora of pathways and factors. Here, we report that RBP-J, a DNA-binding protein that integrates signals from multiple pathways including the Notch pathway, is critically involved in polarization of M2 macrophages. Mice deficient in RBP-J in the myeloid compartment exhibited impaired M2 phenotypes in vivo in a chitin-induced model of M2 polarization. Consistent with the in vivo findings, M2 polarization was partially compromised in vitro in Rbpj-deficient macrophages as demonstrated by reduced expression of a subset of M2 effector molecules including arginase 1. Functionally, myeloid Rbpj deficiency impaired M2 effector functions including recruitment of eosinophils and suppression of T cell proliferation. Collectively, we have identified RBP-J as an essential regulator of differentiation and function of alternatively activated macrophages.
Animals
;
Cell Polarity
;
drug effects
;
genetics
;
immunology
;
Cell Proliferation
;
drug effects
;
genetics
;
Chitin
;
immunology
;
pharmacology
;
Eosinophils
;
cytology
;
immunology
;
Gene Expression Regulation
;
drug effects
;
immunology
;
Immunoglobulin J Recombination Signal Sequence-Binding Protein
;
genetics
;
immunology
;
Macrophage Activation
;
drug effects
;
genetics
;
Macrophages
;
cytology
;
immunology
;
Mice
;
Mice, Transgenic
;
T-Lymphocytes
;
cytology
;
immunology
8.Effect of histone acetylation/deacetylation imbalances on key gene of planar cell polarity pathway.
Hong-Yu DUAN ; Yi ZHANG ; Kai-Yu ZHOU ; Chuan WANG ; DA-Jian QIU ; Yi-Min HUA
Chinese Journal of Contemporary Pediatrics 2017;19(4):475-483
OBJECTIVETo investigate the effect of histone acetylation/deacetylation imbalances on embryonic hearts of mice and its effect on key genes of planar cell polarity (PCP) pathway-Vangl2, Scrib and Rac1 in H9C2 cells.
METHODSForty pregnant C57/B6 mice were randomly assigned into three groups: blank group (n=10), vehicle group (n=10), and valproic acid (VPA)-treated group (n=20). In the VPA-treated group, VPA, a histone deacetylase (HDAC) inhibitor, was administered to each individual dam intraperitoneally at a single dose of 700 mg/kg on embryonic day 10.5 (E10.5). The vehicle and blank groups received equivalent saline or no interventions, respectively. Dams were sacrificed on E15.5, and death rates of embryos were evaluated. Subsequently, embryonic hearts of survival fetus were removed to observe cardiac abnormalities by hematoxylin-eosin (HE) staining. H9C2 cells were cultured and allotted to the blank, vehicle, and VPA-treated groups: the VPA treated group received VPA exposure at concentrations of 2.0, 4.0 and 8.0 mmol/L; the vehicle and blank groups received equivalent saline or no interventions, respectively. HDAC1-3 as well as Vangl2, Scrib and Rac1 mRNA and protein expression levels were determined by quantitative real-time PCR and Western blot, respectively. The total HDAC activity was analyzed by colorimetric assay.
RESULTSThe fetus mortality rate after VPA treatment was 31.7%, with a significantly higher rate of cardiac abnormalities in comparison with the controls (P<0.05). In comparison with the blank and vehicle groups, HDAC1 mRNA was significantly increased at various concentrations of VPA treatment at all time points of exposure (P<0.05), together with a reduction of protein level after 48 and 72 hours of exposure (P<0.05). The inhibition of HDAC2 mRNA after various concentrations of VPA incubation was pronounced at 24 hours of exposure (P<0.05), while the protein levels were reduced at all time points (P<0.05). HDAC3 mRNA was prominently induced by VPA (4.0 and 8.0 mmol/L) at all time points of treatment (P<0.05). In contrast, the protein level was inhibited after VPA treatment (P<0.05). In comparison with the blank and vehicle groups, Vangl2 mRNA as well as Scrib mRNA/protein expression levels were markedly reduced after 48 and 72 hours of VPA treatment (P<0.05), together with a reduction of protein level in Vangl2 at 72 hours (P<0.05). Compared with the blank and vehicle groups, a significant repression in the total HDAC activity was observed in the VPA-treated group at concentrations of 4.0 and 8.0 mmol/L after 24 hours of treatment (P<0.05), and the effect persisted up to 48 and 72 hours, exhibiting pronounced inhibition at all concentrations (P<0.05).
CONCLUSIONSVPA might result in acetylation/deacetylation imbalances by inhibiting HDAC1-3 protein expression and total HDAC activity, leading to the down-regulation of mRNA and protein expression of Vangl2 and Scrib. This could be one of the mechanisms contributing to congenital heart disease.
Acetylation ; Animals ; Cell Polarity ; Cells, Cultured ; Fetal Heart ; drug effects ; metabolism ; Heart Defects, Congenital ; etiology ; Histone Deacetylase 1 ; genetics ; Histone Deacetylase 2 ; genetics ; Histones ; metabolism ; Mice ; Mice, Inbred C57BL ; Nerve Tissue Proteins ; genetics ; RNA, Messenger ; analysis ; Valproic Acid ; pharmacology
9.Regulation of microRNA-126 on the polarization of human macrophages stimulated by Porphyromonas gingivalis lipopolysaccharide.
Jia Jun LI ; Yue LIU ; Li Ting SONG ; Chang Yi LI ; Shao Yun JIANG
Chinese Journal of Stomatology 2022;57(4):390-396
Objective: To study the effect of microRNA-126 (miR-126) on the polarization of human monocyte-derived macrophages stimulated by Porphyromonas gingivalis (Pg) lipopolysaccharide (LPS). Methods: Macrophages derived from human myeloid leukemia mononuclear cells were stimulated by Pg-LPS (5 mg/L) and by Pg-LPS (5 mg/L) after 24 h-transfection of miR-126 mimic or negative control RNA for 48 h, respectively. Real-time quantitative-PCR (qRT-PCR), enzyme-linked immunosorbent assay (ELISA) and Western blotting were conducted to detect the changes in miR-126, pro-inflammatory factor tumor necrosis factor-α (TNF-α), anti-inflammatory factors interleukin-10 (IL-10), inducible nitric oxide synthase (iNOS), arginase-1 (Arg-1) and M1 polarization-related pathways such as nuclear factor kappa-B (NF-κB) and mitogen-activated protein kinase (MAPK) signaling pathways. Results: Compared with non-LPS stimulation group (TNF-α: 1.000±0.020, iNOS: 1.125±0.064, miR-126: 1.004±0.113, IL-10: 1.003±0.053, Arg-1: 1.130±0.061), the mRNA levels of TNF-α (3.105±0.278) and iNOS (4.296±0.003) increased significantly (t=6.53, P=0.003; t=42.63, P<0.001, respectively), while miR-126, IL-10 and Arg-1 expressions (0.451±0.038, 0.545±0.004 and 0.253±0.017) decreased significantly (t=7.95, P=0.001; t=7.36, P=0.002; t=11.94, P<0.001, respectively) after Pg-LPS stimulated by human-derived macrophages for 48 h. The protein expression of iNOS, TNF-α, Arg-1 and IL-10 were consistent at mRNA levels. Meanwhile, the expressions of phospho-NF-κB p65 (p-p65), phospho-extracellular signal-regulated kinase (p-ERK) and phospho-p38 MAPK (p-p38) increased significantly, while the expression of Arg-1 decreased significantly. Compared with the negative controls (scramble RNA) (TNF-α: 1.141±0.197, iNOS: 1.173±0.115, IL-10: 1.032±0.138, Arg-1: 0.933±0.044), the mRNA levels of TNF-α (0.342±0.022) and iNOS (0.588±0.085) expressions significantly decreased (t=5.35, P=0.006; t=5.05, P=0.007), while IL-10 (1.786±0.221) and Arg-1 expressions (2.152±0.229) significantly increased (t=3.71, P=0.021; t=6.21, P=0.003) after Pg-LPS stimulation with miR-126 mimic transfection. The relative protein expressions of iNOS, p-p65, p-ERK and p-p38 significantly decreased (t=13.00, P<0.001; t=6.98, P=0.002; t=10.86, P<0.001; t=8.32, P=0.001), while the protein level of Arg-1 significantly increased (t=12.08, P<0.001). Conclusions: Pg-LPS could promote M1 polarization of macrophages. miR-126 might inhibit the effect of Pg-LPS on the M1 polarization of macrophages through down-regulating NF-κB and MAPK signaling pathways.
Cell Polarity
;
Humans
;
Interleukin-10/metabolism*
;
Lipopolysaccharides/pharmacology*
;
Macrophage Activation
;
Macrophages/drug effects*
;
MicroRNAs/metabolism*
;
NF-kappa B/metabolism*
;
Porphyromonas gingivalis
;
RNA, Messenger/metabolism*
;
Tumor Necrosis Factor-alpha/metabolism*
10.Acetyl salicylic acid inhibits Th17 airway inflammation via blockade of IL-6 and IL-17 positive feedback.
Hyung Geun MOON ; Chil Sung KANG ; Jun Pyo CHOI ; Dong Sic CHOI ; Hyun Il CHOI ; Yong Wook CHOI ; Seong Gyu JEON ; Joo Yeon YOO ; Myoung Ho JANG ; Yong Song GHO ; Yoon Keun KIM
Experimental & Molecular Medicine 2013;45(1):e5-
T-helper (Th)17 cell responses are important for the development of neutrophilic inflammatory disease. Recently, we found that acetyl salicylic acid (ASA) inhibited Th17 airway inflammation in an asthma mouse model induced by sensitization with lipopolysaccharide (LPS)-containing allergens. To investigate the mechanism(s) of the inhibitory effect of ASA on the development of Th17 airway inflammation, a neutrophilic asthma mouse model was generated by intranasal sensitization with LPS plus ovalbumin (OVA) and then challenged with OVA alone. Immunologic parameters and airway inflammation were evaluated 6 and 48 h after the last OVA challenge. ASA inhibited the production of interleukin (IL)-17 from lung T cells as well as in vitro Th17 polarization induced by IL-6. Additionally, ASA, but not salicylic acid, suppressed Th17 airway inflammation, which was associated with decreased expression of acetyl-STAT3 (downstream signaling of IL-6) in the lung. Moreover, the production of IL-6 from inflammatory cells, induced by IL-17, was abolished by treatment with ASA, whereas that induced by LPS was not. Altogether, ASA, likely via its acetyl moiety, inhibits Th17 airway inflammation by blockade of IL-6 and IL-17 positive feedback.
Animals
;
Aspirin/pharmacology/*therapeutic use
;
Cell Polarity/drug effects/immunology
;
Feedback, Physiological/*drug effects
;
Interferon-gamma/deficiency/metabolism
;
Interleukin-17/*metabolism/pharmacology
;
Interleukin-6/biosynthesis/*metabolism
;
Lipopolysaccharides/pharmacology
;
Lung/drug effects/metabolism/pathology
;
Mice
;
Mice, Inbred C57BL
;
Pneumonia/*drug therapy/*immunology/pathology
;
Th17 Cells/drug effects/*immunology/pathology
;
Transforming Growth Factor beta1/pharmacology