1.Expression of miR-155-5p in Wilms tumor and its regulatory role in proliferation, migration and apoptosis of Wilms tumor cells .
Xin LUO ; Junjun DONG ; Xingyue HE ; Lianju SHEN ; Chunlan LONG ; Feng LIU ; Xing LIU ; Tao LIN ; Dawei HE ; Guanghui WEI
Journal of Southern Medical University 2019;39(12):1476-1481
OBJECTIVE:
explore the expression of miR-155-5p in Wilms tumor and its effect in regulating the proliferation, migration and apoptosis of Wilms tumor cells.
METHODS:
Specimens of tumor tissues and paired adjacent tissues were obtained from 40 patients with Wilms tumor for detection of the expression levels of miR-155-5p using RT-qPCR. Wilms tumor cell line G401 was transfected with miR-155-5p mimics and miR-155-5p inhibitor to induce miR-155-5p over-expression and its inhibition, respectively, and the changes in the cell proliferation, migration and apoptosis were assessed using cell counting kit-8 (CCK-8), wound healing assay and fl ow cytometry.
RESULTS:
RT-qPCR showed that the expression of miR-155-5p decreased significantly in Wilms tumor tissues as compared with normal kidney tissues and was significantly associated with TNM stage ( < 0.05). In G401 cells, over-expression of miR-155-5p significantly inhibited the cell proliferation and migration and promoted cell apoptosis ( < 0.05), and down-regulation of miR-155-5p obviously enhanced the proliferation and migration and suppressed apoptosis of the cells ( < 0.05).
CONCLUSIONS
miR-155-5p is down-regulated in Wilms tumor and its expression level is correlated with TNM stage. miR-155-5p participates in the progression of Wilms tumor by inhibiting the proliferation and migration and promoting apoptosis of the tumor cells, and may serve as a novel biomarker for diagnosis, therapy and prognostic evaluation of Wilms tumor.
Apoptosis
;
Cell Movement
;
Cell Proliferation
;
Humans
;
Kidney Neoplasms
;
genetics
;
MicroRNAs
;
genetics
;
Neoplasm Invasiveness
;
Wilms Tumor
;
genetics
2.Long non-coding RNA LOC101927476 inhibits invasion, migration, and proliferation of ovarian cancer cell lines.
Peng Fei ZHAO ; Ya Bing NAN ; Ya Ting WANG ; Bin LI ; Zhi Hua LIU
Chinese Journal of Oncology 2022;44(1):104-111
Objective: To investigate the expression of long non-coding RNA LOC101927476 (LncRNA LOC101927476) in ovarian cancer and its effect on the biological characteristics of ovarian cancer. Methods: Patients with ovarian cancer who underwent surgery in Cancer Hospital of Chinese Academy of Medical Sciences from 2018 to 2019 were selected. The expressions of LOC101927476 in ovarian cancer cells 3AO, OVCA429, TOV21G, A2780, SKOV3, as well as 22 primary tumor tissues and their matched metastatic tumor tissues were detected by real-time quantitative polymerase chain reaction (RT-PCR). Ovarian cancer transcriptome sequencing data from the TCGA database was used to verify the expressions of LOC101927476 and GATA4. 3AO and OVCA429 cells were infected with lentivirus plasmid containing OE-LOC101927476 and single guide RNA (sg-RNA) targeting LOC101927476, respectively. The effects of LOC101927476 on migration and invasion were detected by Transwell and wound healing assay. The effect of LOC101927476 on cell proliferation was detected by cell counting kit-8 (CCK-8) assay. Results: RT-PCR assay showed that 20 out of 22 patients had significantly lower expression of LOC101927476 in their metastatic tumors compared with primary tumors. Transwell assay showed that overexpression of LOC101927476 significantly inhibited the invasion and migration capacities of 3AO cells. The numbers of invading and migrating 3AO cells infected with OE-LOC101927476 lentivirus were (357±63) and (699±65), respectively, lower than (661±95) and (1 024±76) in OE-EV group (P<0.050). In contrast, the numbers of invading and migrating OVCA429 cells with LOC101927476 knockdown were (512±72) and (472±40), respectively, higher than (309±13) and (363±27) in sg-Control group (P<0.050). Wound healing assay results showed that after 48 hours, the percentage of scratch healing of 3AO cells in OE-LOC101927476 group was (10.86±0.63)%, significantly lower than (57.38±4.42)% of OE-EV group (P=0.009). After 24 hours, the percentage of scratch healing of OCVA429 cells in sg-LOC101927476 group was (59.98±1.34)%, significantly higher than (23.15±2.03)% of sg-Control group (P=0.004). CCK-8 assays showed that the OD value of 3AO cells in OE-LOC101927476 group was (2.07±0.08), significantly lower than (2.29±0.04) of OE-EV group (P=0.009). The OD value of OVCA429 cells in sg-LOC101927476 group was (2.13±0.03), significantly higher than (1.93±0.03) of sg-Control group (P=0.001). The relative expression of GATA4 in OE-LOC101927476 group was (1.86±0.25), significantly higher than 1.00 of OE-EV group (P=0.001). In patients with high expression of LncRNA LOC101927476, the expression level of GATA4 was (2.93±0.35), which was higher than (0.29±0.06) of LOC101927476 low expression group (P=0.001). Conclusion: LncRNA LOC101927476 can inhibit the invasion, migration and proliferation of ovarian cancer cells.
Cell Line, Tumor
;
Cell Movement/genetics*
;
Cell Proliferation/genetics*
;
Female
;
Humans
;
Neoplasm Invasiveness
;
Ovarian Neoplasms/genetics*
;
RNA, Long Noncoding/genetics*
3.Mechanism of Gentisic Acid on Rheumatoid Arthritis Based on miR-19b-3p/RAF1 Axis.
Dou DING ; Qi ZHANG ; Fu-Jia ZENG ; Ming-Xing CAI ; Yuan GAN ; Xiao-Jun DONG
Chinese journal of integrative medicine 2023;29(6):508-516
OBJECTIVE:
To investigate the therapeutic effect of gentisic acid (GA) on rheumatoid arthritis (RA) based on the miR-19b-3p/RAF1 axis.
METHODS:
The cell counting kit-8 method was used to detect the growth inhibitory effect of different concentrations of GA on MH7A cells, and the drug concentration of GA was determined in the experiment. The quantificational real-time polymerase chain reaction (qRT-PCR) was used to detect the expression of miR-19b-3p and RAF1. RAF1, extracellular regulated protein kinases1/2 (ERK1/2) and phospho-ERK1/2 (p-ERK1/2) were examined by Western blotting. Three methods (dual-luciferase assay, qRT-PCR and Western blot analysis) were used to verify miR-19b-3p targeting RAF1. Flow cytometry was performed to detect MH7A cell apoptosis. Transwell and wound healing assays were used to determine the invasion and migration capacities of MH7A cells.
RESULTS:
The growth of MH7A cells was gradually inhibited with increasing GA concentration. When the GA concentration exceeded 80 mmol/L, GA was significantly cytotoxic to MH7A cells, so the half maximal inhibitory concentration of GA for MH7A cells was calculated as 67.019 mmol/L. GA upregulated miR-19b-3p expression, downregulated RAF1 expression, inhibited ERK1/2 phosphorylation, induced MH7A cell apoptosis and suppressed MH7A cell invasion and migration (P<0.05 or P<0.01). RAF1 was identified as the target of miR-19b-3p and reversed inhibitory effects on miR-19b-3p expression (P<0.05 or P<0.01). The miR-19b-3p inhibitor upregulated RAF1 expression and ERK1/2 phosphorylation, suppressed MH7A cell apoptosis and induced MH7A cell invasion and migration (P<0.01).
CONCLUSION
GA regulated miR-19b-3p/RAF1 axis to mediate ERK pathway and inhibit the development of RA.
Humans
;
Cell Proliferation
;
MicroRNAs/metabolism*
;
Arthritis, Rheumatoid/genetics*
;
Gentisates/pharmacology*
;
Cell Movement/genetics*
5.Silence of cytoskeleton-associated protein 2 represses cell proliferation and migration and promotes apoptosis in liver cancer cell lines.
Changsheng ZHANG ; Xuezhen ZHANG ; Zongming HAN ; Hongbo ZHU ; Tao WAN
Journal of Central South University(Medical Sciences) 2020;45(4):365-371
OBJECTIVES:
To investigate the roles of cytoskeleton-associated protein 2 (CKAP2) in proliferation, apoptosis, and migration in liver cancer cells and the potential mechanisms.
METHODS:
Human normal hepatocyte L02 and liver cancer cell lines HepG2, Huh7, and SMMC-7721 were cultured. The CKAP2 expression was detected by real-time PCR and Western blotting. HepG2 cells were randomly divided into a control group, a negative control (NC) group, and a CKAP2 silencing (siCKAP2) group. CCK-8 and BrdU assays were used to evaluate cell viability and proliferation, respectively. Transwell assay was employed to determine cell migration and invasion. The protein levels of cleaved-caspase 3, Bax, E-cadherin, N-cadherin, Vimentin, phosphorylated Janus kinase 2 (p-JAK2), and phosphorylated signal transducer and activator of transcription 3 (p-STAT3) were determined by Western blotting.
RESULTS:
Compared with normal hepatocyte L02, CKAP2 was highly expressed in liver cancer cell lines HepG2, Huh7, and SMMC-7721 (all <0.05). Compared with the NC group, cell viability and proliferation rate of the siCKAP2 group were decreased (both <0.05). The apoptotic rate, protein expression of cleaved-caspase 3 and Bax in the siCKAP2 group were significantly higher than those in the NC group (all <0.05). Compared with the NC group, cell migration and invasion rates of the siCKAP2 group were significantly attenuated (both <0.05). Compared with the NC group, E-cadherin protein expression in siCKAP2 group was increased, while protein expression levels of Vimentin, N-cadherin, p-JAK2, and p-STAT3 were decreased (all <0.05).
CONCLUSIONS
CKAP2 gene silence inhibits proliferation, migration, and invasion, and promotes apoptosis in liver cancer cells, while JAK2/STAT3 signaling pathway may be involved in these processes.
Apoptosis
;
Cell Line, Tumor
;
Cell Movement
;
Cell Proliferation
;
Cytoskeleton
;
Humans
;
Liver Neoplasms
;
genetics
6.Effects of tetrandrine on proliferation, migration, and invasion of glioblastoma cells.
Xin-Yu LU ; Zhong-Ze WANG ; Si-Cheng WAN ; Er-Hu ZHAO ; Hong-Juan CUI
China Journal of Chinese Materia Medica 2021;46(24):6520-6529
Glioblastoma is the most common intracranial primary malignant tumor, which leads to the poor quality of life of patients and has a high recurrence rate. Chemotherapy is a vital part in the treatment of this disease. Tetrandrine(Tet) is an active ingredient extracted from the root of the Chinese medicinal plant Stephania tetrandra, which has been proved with a wide range of pharmacological effects including anti-tumor. However, there are few studies regarding the effect of Tet on glioma. In this study, MTT and BrdU assays were employed to detect the effect of Tet on the proliferation of LN229 glioblastoma cells; flow cytometry was used to analyze the cycle distribution and apoptosis; plate cloning assay and soft agar colony formation assay were performed to study the colony formation ability of LN229 cells exposed to Tet; scratch assay and Transwell assay were conducted to detect the ability of migration and invasion; Western blot was adopted to the exploration of the molecular mechanism. The MTT and BrdU assays showed that Tet inhibited the proliferation of LN229 cells in a time-and dose-dependent manner. The plate cloning assay and soft agar colony formation assay showed that Tet weakened the colony formation of LN229 cells in vitro; cytometry assay showed that Tet blocked cells in the G_1 phase and promoted cell apoptosis; scratch and Transwell assays proved that Tet inhibited the migration and invasion of LN229 cells; Western blot results showed that Tet down-regulated the expression levels of CDK2, CDK6, cyclin D1, cyclin E1, snail, slug, vimentin, and N-cadherin, while up-regulated the level of E-cadherin. The results indicate that Tet has a certain inhibitory effect on the proliferation, migration, and invasion of LN229 glioblastoma cells, and such effect may be related to the participation of Tet in the regulation of c-Myc/p27 axis and snail signaling pathway.
Apoptosis
;
Benzylisoquinolines
;
Cell Line, Tumor
;
Cell Movement
;
Cell Proliferation
;
Glioblastoma/genetics*
;
Humans
;
Quality of Life
8.High expression of ZNF652 promotes carcinogenesis and progression of breast cancer.
Ting LEI ; Bin XIAO ; Yongyin HE ; Zhaohui SUN ; Linhai LI
Journal of Southern Medical University 2020;40(12):1732-1739
OBJECTIVE:
To investigate the expression of ZNF652 in breast cancer tissues and cells and explore its role in breast cancer cell proliferation, invasion and migration.
METHODS:
We exploited the data from the TCGA database to analyze the differential expression of ZNF652 in breast cancer tissues and adjacent tissues and the correlations of ZNF652 expression with the clinicopathological characteristics of breast cancer patients including molecular subtypes, pathological types, TNM stages and clinical stages. RT-qPCR and Western blotting were used to detect the expression of ZNF652 in 5 breast cancer cell lines including MCF-7, MDA-MB-231, SK-BR-3, UACC-812 and BT-474. Using a lentivirus system and siRNA technique, we assessed the effects of ZNF652 over-expression and knockdown on proliferation, colony forming ability, migration and invasion of breast cancer cells with CCK-8 assay, clonogenic assay, Transwell assay and wound healing assay. The subcellular localization of ZNF652 in 293T cells was determined using immunofluorescence assay.
RESULTS:
ZNF652 was significantly up-regulated in breast cancer tissues (
CONCLUSIONS
ZNF652 is highly expressed in breast cancer tissues and cells to promote the development and progression of breast cancer and may serve as a potential molecular target for diagnosis and treatment of the malignancy.
Breast Neoplasms/genetics*
;
Carcinogenesis
;
Cell Line, Tumor
;
Cell Movement
;
Cell Proliferation
;
Gene Expression Regulation, Neoplastic
;
Humans
9.MiR-3653 blocks autophagy to inhibit epithelial-mesenchymal transition in breast cancer cells by targeting the autophagy-regulatory genes ATG12 and AMBRA1.
Huachen SONG ; Zitong ZHAO ; Liying MA ; Bailin ZHANG ; Yongmei SONG
Chinese Medical Journal 2023;136(17):2086-2100
BACKGROUND:
Metastasis is the main cause of tumor-associated death and mainly responsible for treatment failure of breast cancer. Autophagy accelerates tumor metastasis. In our work, we aimed to investigate the possibility of microRNAs (miRNAs) which participate in the regulation of autophagy to inhibit tumor metastasis.
METHODS:
MiRNA array and comprehensive analysis were performed to identify miRNAs which participated in the regulation of autophagy to inhibit tumor metastasis. The expression levels of miR-3653 in breast cancer tissues and cells were detected by quantitative real-time polymerase chain reaction. In vivo and in vitro assays were conducted to determine the function of miR-3653. The target genes of miR-3653 were detected by a dual luciferase reporter activity assay and Western blot. The relationship between miR-3653 and epithelial-mesenchymal transition (EMT) was assessed by Western blot. Student's t -test was used to analyze the difference between any two groups, and the difference among multiple groups was analyzed with one-way analysis of variance and a Bonferroni post hoc test.
RESULTS:
miR-3653 was downregulated in breast cancer cells with high metastatic ability, and high expression of miR-3653 blocked autophagic flux in breast cancer cells. Clinically, low expression of miR-3653 in breast cancer tissues (0.054 ± 0.013 vs . 0.131 ± 0.028, t = 2.475, P = 0.014) was positively correlated with lymph node metastasis (0.015 ± 0.004 vs . 0.078 ± 0.020, t = 2.319, P = 0.023) and poor prognosis ( P < 0.001). miR-3653 ameliorated the malignant phenotypes of breast cancer cells, including proliferation, migration (MDA-MB-231: 0.353 ± 0.013 vs . 1.000 ± 0.038, t = 16.290, P < 0.001; MDA-MB-468: 0.200 ± 0.014 vs . 1.000 ± 0.043, t = 17.530, P < 0.001), invasion (MDA-MB-231: 0.723 ± 0.056 vs . 1.000 ± 0.035, t = 4.223, P = 0.013; MDA-MB-468: 0.222 ± 0.016 vs . 1.000 ± 0.019, t = 31.050, P < 0.001), and colony formation (MDA-MB-231: 0.472 ± 0.022 vs . 1.000 ± 0.022, t = 16.620, P < 0.001; MDA-MB-468: 0.650 ± 0.040 vs . 1.000 ± 0.098, t = 3.297, P = 0.030). The autophagy-associated genes autophagy-related gene 12 ( ATG12 ) and activating molecule in beclin 1-regulated autophagy protein 1 ( AMBRA1 ) are target genes of miR-3653. Further studies showed that miR-3653 inhibited EMT by targeting ATG12 and AMBRA1 .
CONCLUSIONS
Our findings suggested that miR-3653 inhibits the autophagy process by targeting ATG12 and AMBRA1 , thereby inhibiting EMT, and provided a new idea and target for the metastasis of breast cancer.
Cell Line, Tumor
;
Epithelial-Mesenchymal Transition/genetics*
;
MicroRNAs/metabolism*
;
Autophagy/genetics*
;
Genes, Regulator
;
Gene Expression Regulation, Neoplastic/genetics*
;
Cell Proliferation/genetics*
;
Cell Movement/genetics*
;
Neoplasms/genetics*
10.Astrocyte elevated gene-1 serves as a target of miR542 to promote glioblastoma proliferation and invasion.
Chong LI ; Hai-Long LIU ; Yu-Mei ZHOU ; Yan-Chun SHI ; Zhi-Bin ZHANG ; Ling CHEN ; Shi-Yu FENG
Chinese Medical Journal 2020;133(20):2437-2443
BACKGROUND:
Epithelial to mesenchymal transition (EMT) is strongly linked with tumor invasion and metastasis, which performs a vital role in carcinogenesis and cancer progression. Emerging evidence suggests that microRNAs (miRNAs) expression are closely associated to EMT by regulating targeted genes. MiR542 has been found to be involved in the EMT program and bound up with various cancers. However, the functions of miR542 and its underlying mechanism in glioblastoma multiforme (GBM) remain largely unknown. In the current study, we investigated the effect of astrocyte elevated gene-1 (AEG-1) on U251 cells aggressiveness, proliferation, apoptosis, and cell cycle.
METHODS:
The screening of targeted miRNAs was performed, as well as the functional roles and mechanisms of miR542 were explored.
RESULTS:
MiR542 was selected as the target because of the most significantly differential expression and this high level of expression negatively correlated with cell migration and proliferation, which suggested that miR542 could be a novel tumor suppressor. Moreover, we confirmed that AEG-1 was a direct targeted gene of miR542 by luciferase activity assay, reverse transcription-polymerase chain reaction, and immunoblotting analysis. Furthermore, miR542 suppressed the expression of AEG-1, which upgraded the level of E-cadherin and degraded Vimentin expression contributing to retraining EMT.
CONCLUSION
The in vitro findings demonstrated that miR542 inhibited the migration and proliferation of U251 cells and suppressed EMT through targeting AEG-1, indicating that miR542 may be a potential anti-cancer target for GBM.
Astrocytes
;
Cell Line, Tumor
;
Cell Movement/genetics*
;
Cell Proliferation/genetics*
;
Epithelial-Mesenchymal Transition/genetics*
;
Gene Expression Regulation, Neoplastic
;
Glioblastoma/genetics*
;
Humans
;
MicroRNAs/genetics*
;
Neoplasm Invasiveness/genetics*