1.Human umbilical cord mesenchymal stem cells protect against neonatal white matter injury by activating the Nrf2/Keap1/HO-1 signaling pathway.
Chao WANG ; Meng-Xin WANG ; Yan-Ping ZHU
Chinese Journal of Contemporary Pediatrics 2025;27(11):1398-1407
OBJECTIVES:
To investigate whether human umbilical cord mesenchymal stem cells (HUC-MSCs) play protective effects against white matter injury (WMI) in neonatal rats via activation of the nuclear factor-erythroid 2-related factor 2 (Nrf2)/Kelch-like ECH-associated protein 1 (Keap1)/heme oxygenase-1 (HO-1) signaling pathway.
METHODS:
A neonatal WMI model was established in 3-day-old Sprague-Dawley rats by unilateral common carotid artery ligation combined with hypoxia. The study comprised two parts. (1) Rats were randomized into sham, hypoxia-ischemia (HI), and HUC-MSC groups (n=36 per group); brain tissues were collected at 7, 14, and 21 days after modeling. (2) Rats were randomized into sham, HI, HUC-MSC, and HUC-MSC+ML385 (Nrf2 inhibitor) groups (n=12 per group); tissues were collected 14 days after modeling. Hematoxylin-eosin staining assessed histopathology, and Luxol fast blue staining evaluated myelination. Immunohistochemistry examined the localization and expression of Nrf2, myelin basic protein (MBP), and proteolipid protein (PLP). Immunofluorescence assessed synaptophysin (SYP) and postsynaptic density-95 (PSD-95). Western blotting quantified Nrf2, Keap1, HO-1, SYP, PSD-95, MBP, and PLP. Spatial learning and memory were evaluated by the Morris water maze.
RESULTS:
At 7, 14, and 21 days after modeling, the sham group showed intact white matter, whereas the HI group exhibited white matter disruption, cellular vacuolation, and disorganized nerve fibers. These pathological changes were attenuated in the HUC-MSC group. Compared with the HI group, the HUC-MSC group showed increased Nrf2 immunopositivity and protein levels, increased HO-1 protein levels, and decreased Keap1 protein levels (P<0.05). Compared with the HI group, the HUC-MSC group had higher SYP and PSD-95 immunofluorescence intensities and protein levels, higher MBP and PLP positivity and protein levels, increased mean optical density of myelin, more platform crossings, and longer time in the target quadrant (all P<0.05). These improvements were reduced in the HUC-MSC+ML385 group compared with the HUC-MSC group (P<0.05).
CONCLUSIONS
HUC-MSCs may promote oligodendrocyte maturation and synaptogenesis after neonatal WMI by activating the Nrf2/Keap1/HO-1 pathway, thereby improving spatial cognitive function.
NF-E2-Related Factor 2/physiology*
;
Animals
;
Rats, Sprague-Dawley
;
Signal Transduction/physiology*
;
Humans
;
Rats
;
White Matter/pathology*
;
Kelch-Like ECH-Associated Protein 1/physiology*
;
Umbilical Cord/cytology*
;
Heme Oxygenase-1/physiology*
;
Animals, Newborn
;
Male
;
Mesenchymal Stem Cell Transplantation
;
Heme Oxygenase (Decyclizing)/physiology*
;
Mesenchymal Stem Cells/physiology*
;
Female
;
Hypoxia-Ischemia, Brain
2.Human ESC-derived vascular cells promote vascular regeneration in a HIF-1α dependent manner.
Jinghui LEI ; Xiaoyu JIANG ; Daoyuan HUANG ; Ying JING ; Shanshan YANG ; Lingling GENG ; Yupeng YAN ; Fangshuo ZHENG ; Fang CHENG ; Weiqi ZHANG ; Juan Carlos Izpisua BELMONTE ; Guang-Hui LIU ; Si WANG ; Jing QU
Protein & Cell 2024;15(1):36-51
Hypoxia-inducible factor (HIF-1α), a core transcription factor responding to changes in cellular oxygen levels, is closely associated with a wide range of physiological and pathological conditions. However, its differential impacts on vascular cell types and molecular programs modulating human vascular homeostasis and regeneration remain largely elusive. Here, we applied CRISPR/Cas9-mediated gene editing of human embryonic stem cells and directed differentiation to generate HIF-1α-deficient human vascular cells including vascular endothelial cells, vascular smooth muscle cells, and mesenchymal stem cells (MSCs), as a platform for discovering cell type-specific hypoxia-induced response mechanisms. Through comparative molecular profiling across cell types under normoxic and hypoxic conditions, we provide insight into the indispensable role of HIF-1α in the promotion of ischemic vascular regeneration. We found human MSCs to be the vascular cell type most susceptible to HIF-1α deficiency, and that transcriptional inactivation of ANKZF1, an effector of HIF-1α, impaired pro-angiogenic processes. Altogether, our findings deepen the understanding of HIF-1α in human angiogenesis and support further explorations of novel therapeutic strategies of vascular regeneration against ischemic damage.
Humans
;
Vascular Endothelial Growth Factor A/metabolism*
;
Endothelial Cells/metabolism*
;
Transcription Factors/metabolism*
;
Gene Expression Regulation
;
Hypoxia/metabolism*
;
Cell Hypoxia/physiology*
3.Research progress on the mechanism of phenotypic transformation of pulmonary artery smooth muscle cells induced by hypoxia.
Journal of Zhejiang University. Medical sciences 2023;51(6):750-757
Phenotypic transformation of pulmonary artery smooth muscle cells (PASMCs) is a key factor in pulmonary vascular remodeling. Inhibiting or reversing phenotypic transformation can inhibit pulmonary vascular remodeling and control the progression of hypoxic pulmonary hypertension. Recent studies have shown that hypoxia causes intracellular peroxide metabolism to induce oxidative stress, induces multi-pathway signal transduction, including those related to autophagy, endoplasmic reticulum stress and mitochondrial dysfunction, and also induces non-coding RNA regulation of cell marker protein expression, resulting in PASMCs phenotypic transformation. This article reviews recent research progress on mechanisms of hypoxia-induced phenotypic transformation of PASMCs, which may be helpful for finding targets to inhibit phenotypic transformation and to improve pulmonary vascular remodeling diseases such as hypoxia-induced pulmonary hypertension.
Humans
;
Pulmonary Artery
;
Hypertension, Pulmonary
;
Vascular Remodeling/genetics*
;
Hypoxia/genetics*
;
Myocytes, Smooth Muscle
;
Cell Proliferation/physiology*
;
Cells, Cultured
;
Cell Hypoxia/genetics*
4.Research on the mechanism of hypoxia promoting the migration of lung adenocarcinoma A549 cells.
Jia-Hao JIN ; Bao-Sheng ZHAO ; Yu-Zhen LIU
Chinese Journal of Applied Physiology 2022;38(1):68-74
Objective: To investigate the mechanism that hypoxia promotes the migration of lung adenocarcinoma A549 cells. Methods: A549 cells were cultured and cells that knockdown of acetyl-CoA carboxylase 1 (ACC1) were obtained by transfection with lentivirus, and cells that knockdown of sterol regulatory element-binding proteins-1 (SREBP-1) were obtained by treated with si-RNA. A549 cells were treated with hypoxia combined with hypoxia inducible factor-1α (HIF-1α) inhibitor PX-478 (25 μmol); Hypoxia combined with linoleic acid (LA) (20 μmol) treated A549 cells with ACC1 knockdown, and A549 cells with SREBP-1 knockdown were treated by hypoxia. Transwell migration assay was used to detect cell migration. Western blot was conducted to detect HIF-1α, ACC1 and epithelial mesenchymal transition (EMT) related proteins, Vimentin, E-Cadherin and SREBP-1; Real-time fluorescent quantitative polymerase chain reaction (RT-qPCR) was performed to detect the changes of ACC1 and SREBP-1 mRNA in A549 cells after hypoxia and HIF-1α inhibitor PX-478 (25 μmol) treatment. Each experiment was repeated three times. Results: Compared with the normoxic control group, hypoxia promoted the migration of A549 cells (P<0.01), and up-regulated the expressions of ACC1, HIF-1α (all P<0.01) and SREBP-1 (P<0.05). PX-478 (25 μmol) inhibited the migration of A549 cells induced by hypoxia and down-regulated the expression of SREBP-1 (all P<0.05). ACC1 mRNA and SREBP-1 mRNA levels were increased after hypoxia treatment of A549 cells (all P<0.05). The levels of ACC1 mRNA and SREBP-1 mRNA were decreased after A549 cells treated with hypoxia combined with PX-478 (25 μmol) for 24 h (P<0.05, P<0.01). Knockdown of SREBP-1 in A549 cells was obtained by transfection with si-RNA. Transwell migration assay showed the number of cell migration in si-SREBP-1 group was less than that in normoxia control group (P<0.01). The si-SREBP-1 group and the si-NC group were treated with hypoxia. Compared with the control group, the number of cell migration in the si-SREBP-1 group was decreased (P<0.01), however, the difference was not statistically significant compared with the normoxia si-SREBP-1 group (P>0.05). Western blot showed that the expression of ACC1 in the si-SREBP-1 group was lower than that in the control group (P<0.01). Compared with the control group, the expression of ACC1 was decreased after si-SREBP-1 group treated with hypoxia (P<0.01). Knockdown of ACC1 inhibited the migration of A549 cells (P<0.05). After knockdown of ACC1, the migration number of A549 cells under normoxia and 5% O2 conditions had no significant difference (P>0.05). Application of LA under hypoxia condition rescued ACC1-knockdown induced inhibitory effect on hypoxia-promoted A549 cell migration (P<0.05). Conclusion: Hypoxia promotes migration of lung adenocarcinoma A549 cells by regulating fatty acid metabolism through HIF-1α/SREBP-1/ACC1 pathway.
A549 Cells
;
Acetyl-CoA Carboxylase
;
Adenocarcinoma of Lung
;
Cell Hypoxia/physiology*
;
Cell Line, Tumor
;
Humans
;
Hypoxia
;
Hypoxia-Inducible Factor 1, alpha Subunit
;
Lung Neoplasms
;
RNA/metabolism*
;
RNA, Messenger/metabolism*
;
Sterol Regulatory Element Binding Protein 1/metabolism*
5.Modulation of drug-metabolizing enzymes and transporters under hypoxia environment.
Qiong MIN ; Shi-Lan FENG ; Hui LU ; Wen-Bin LI ; Chang WANG ; Juan-Hong ZHANG ; Rong WANG
Acta Physiologica Sinica 2019;71(2):336-342
Drug metabolism is significantly affected under hypoxia environment with changes of pharmacokinetics, expression and function of drug-metabolizing enzymes and transporters. Studies have shown that hypoxia increases the release of a series of inflammatory cytokines which can modulate drug metabolism. Besides, both hypoxia inducible factor 1α (HIF-1α) and microRNA-mediated pathways play a role in regulating drug metabolism. This article reviewed the impact and single-factor modulating mechanisms of drug metabolism under hypoxia, and put forward the speculation and prospects of multi-factor modulating mechanisms.
Cell Hypoxia
;
Humans
;
Hypoxia
;
Hypoxia-Inducible Factor 1, alpha Subunit
;
physiology
;
Membrane Transport Proteins
;
physiology
;
MicroRNAs
;
physiology
;
Pharmaceutical Preparations
;
metabolism
6.Salvianolic Acid A Protects Neonatal Cardiomyocytes Against Hypoxia/Reoxygenation-Induced Injury by Preserving Mitochondrial Function and Activating Akt/GSK-3β Signals.
Xue-Li LI ; Ji-Ping FAN ; Jian-Xun LIU ; Li-Na LIANG
Chinese journal of integrative medicine 2019;25(1):23-30
OBJECTIVE:
To investigate the effects of salvianolic acid A (SAA) on cardiomyocyte apoptosis and mitochondrial dysfunction in response to hypoxia/reoxygenation (H/R) injury and to determine whether the Akt signaling pathway might play a role.
METHODS:
An in vitro model of H/R injury was used to study outcomes on primary cultured neonatal rat cardiomyocytes. The cardiomyocytes were treated with 12.5, 25, 50 μg/mL SAA at the beginning of hypoxia and reoxygenation, respectively. Adenosine triphospate (ATP) and reactive oxygen species (ROS) levels were assayed. Cell apoptosis was evaluated by flow cytometry and the expression of cleaved-caspase 3, Bax and Bcl-2 were detected by Western blotting. The effects of SAA on mitochondrial dysfunction were examined by determining the mitochondrial membrane potential (△Ψm) and mitochondrial permeability transition pore (mPTP), followed by the phosphorylation of Akt (p-Akt) and GSK-3β (p-GSK-3β), which were measured by Western blotting.
RESULTS:
SAA significantly preserved ATP levels and reduced ROS production. Importantly, SAA markedly reduced the number of apoptotic cells and decreased cleaved-caspase 3 expression levels, while also reducing the ratio of Bax/Bcl-2. Furthermore, SAA prevented the loss of △Ψm and inhibited the activation of mPTP. Western blotting experiments further revealed that SAA significantly increased the expression of p-Akt and p-GSK-3β, and the increase in p-GSK-3β expression was attenuated after inhibition of the Akt signaling pathway with LY294002.
CONCLUSION
SAA has a protective effect on cardiomyocyte H/R injury; the underlying mechanism may be related to the preservation of mitochondrial function and the activation of the Akt/GSK-3β signaling pathway.
Adenosine Triphosphate
;
analysis
;
Animals
;
Animals, Newborn
;
Caffeic Acids
;
pharmacology
;
Cell Hypoxia
;
Cells, Cultured
;
Glycogen Synthase Kinase 3 beta
;
physiology
;
Lactates
;
pharmacology
;
Mitochondria, Heart
;
drug effects
;
physiology
;
Mitochondrial Membrane Transport Proteins
;
drug effects
;
Myocytes, Cardiac
;
drug effects
;
Proto-Oncogene Proteins c-akt
;
physiology
;
Rats
;
Rats, Sprague-Dawley
;
Reactive Oxygen Species
;
metabolism
;
Signal Transduction
;
physiology
7.Knocking-out of HIF1α gene by CRISPR/cas9 inhibits proliferation and invasiveness of prostate cancer DU145 cells.
Yunyi XU ; Zhou_qiao@hotmail.com. ; Miao XU ; Mengni ZHANG ; Junya TAN ; Zhengzheng SU ; Xueqin CHEN ; Qiao ZHOU
Chinese Journal of Medical Genetics 2018;35(2):160-164
OBJECTIVETo explore the role of HIF1α gene in prostate cancer cell line DU145 by knocking it out with a novel gene-editing tool CRISPR/cas9 system.
METHODSA CRISPR/cas9 system with two sgRNAs targeting exon 1 of the HIF1α gene was constructed for the knock out experiment. CCK8 assay and transwell experiment were carried out to assess the effect of the knock out on the proliferation, migration and invasiveness of DU145 cells.
RESULTSThe efficiency of gene-targeting was measured through a T7E1 assaying and sequence analysis, which confirmed that the partial knock out was successful and has led to a significant decrease in the expression of HIF1α and inhibition of cell proliferation, migration and invasiveness.
CONCLUSIONA CRISPR/cas9 system for the knock out of HIF1α has been successfully constructed, which could inhibit the proliferation and migration of DU145 cells. The system can facilitate further studies of the HIF1α gene and its roles in tumorigenesis.
CRISPR-Cas Systems ; genetics ; Cell Line, Tumor ; Cell Movement ; Cell Proliferation ; Gene Editing ; Humans ; Hypoxia-Inducible Factor 1, alpha Subunit ; genetics ; physiology ; Male ; Neoplasm Invasiveness ; Prostatic Neoplasms ; pathology
8.Protective effect of astrocyte exosomes on hypoxic-ischemic neurons.
Jing-Lan HUANG ; Yi QU ; Jun TANG ; Rong ZOU ; Shi-Ping LI ; Ya-Fei LI ; Li ZHANG ; Bin XIA ; De-Zhi MU
Chinese Journal of Contemporary Pediatrics 2018;20(5):397-402
OBJECTIVETo study the effect of astrocyte exosomes on hypoxic-ischemic neurons.
METHODSRat astrocytes were cultured in vitro, and differential centrifugation was used to obtain the exosomes from the cell supernatant. Transmission electron microscopy, Nanosight, and Western blot were used for the identification of exosomes. BCA method was used to measure the concentration of exosomes. Rat neurons were cultured in vitro and then divided into control group, exosome group, oxygen glucose deprivation (OGD) group, and OGD+exosome group (n=3 each). The OGD and OGD+exosome groups were cultured in glucose-free medium under the hypoxic condition. The exosome and OGD+exosome groups were treated with exosomes at a final concentration of 22 μg/mL. The control and OGD groups were given an equal volume of phosphate-buffered saline. ELISA was used to measure the level of lactate dehydrogenase (LDH) in neurons. The terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling was used to measure the apoptotic index of neurons.
RESULTSThe identification of exosomes showed that the exosomes extracted by differential centrifugation had the features of exosomes. Compared with the control and exosome groups, the OGD group had significant increases in LDH level and apoptotic index (P<0.05). Compared with the OGD group, the OGD+exosome group had significant reductions in LDH level and apoptotic index (P<0.05).
CONCLUSIONSThe exosomes from astrocytes have a protective effect on neurons with hypoxic-ischemic injury.
Animals ; Apoptosis ; Astrocytes ; physiology ; Cell Hypoxia ; Cells, Cultured ; Exosomes ; physiology ; Glucose ; deficiency ; Hydro-Lyases ; analysis ; Neuroprotection ; Rats ; Rats, Sprague-Dawley
9.Effect of Endothelial Microparticles Induced by Hypoxia on Migration and Angiogenesis of Human Umbilical Vein Endothelial Cells by Delivering MicroRNA-19b.
Hui-Zhu LIANG ; Su-Fang LI ; Feng ZHANG ; Man-Yan WU ; Chang-Long LI ; Jun-Xian SONG ; Chongyou LEE ; Hong CHEN
Chinese Medical Journal 2018;131(22):2726-2733
Background:
Microparticles (MPs) are small extracellular plasma membrane particles shed by activated and apoptotic cells, which are involved in the development of atherosclerosis. Our previous study found that microRNA (miR)-19b encapsulated within endothelial MPs (EMPs) may contribute to the upregulation of circulating miR-19b in unstable angina patients. Hypoxia is involved in atherosclerosis as a critical pathological stimulus. However, it still remains unclear whether the increase of miR-19b levels in EMPs is related to hypoxia and if the effect of miR-19b - wrapped within EMPs - stimulates hypoxia on vascular endothelial cells. This study aimed to explore the changes of miR-19b in EMPs induced by hypoxia as well as their effects on endothelial cells.
Methods:
Human umbilical vein endothelial cells (HUVECs) were cultured in vitro and arranged to harvest EMPs in two parts: the first part consisted of EMP and EMP and the second part included EMP, EMP, and EMP. Cell migration was detected by scratch migration and transwell chamber migration. Angiogenesis was assessed by tube formation assays. Furthermore, we predicted the target gene of miR-19b by bioinformatics analysis, and luciferase assay was used to verify the targeted gene of miR-19b. Data were analyzed by one-way analysis of variance. Student's t-test was used when two groups were compared.
Results:
Compared with EMP- and EMP-inhibited migration of cells by scratch migration assay (80.77 ± 1.10 vs. 28.37 ± 1.40, P < 0. 001) and transwell chamber migration assay (83.00 ± 3.46 vs. 235.00 ± 16.52, P < 0.01), the number of tube formations was markedly reduced by 70% in the EMP group (P < 0.001) in vitro analysis of HUVECs. Meanwhile, a strong inhibition of migration and tube formation of HUVECs in the presence of miR-19b-enriched EMP was observed. This effect might be due to the delivery of miR-19b in EMPs. Transforming growth factor-β2 (TGFβ2) was predicted to be one of the target genes of miR-19b, and we further confirmed that TGFβ2 was a direct target gene of miR-19b using the luciferase assay. The expression of TGFβ2 in HUVECs was inhibited by treatment with EMP and EMP.
Conclusions
MiR-19b in EMPs induced by hypoxia could reduce endothelial cell migration and angiogenesis by downregulating TGFβ2 expression, which may have inhibited the progression of atherosclerosis.
Cell Hypoxia
;
genetics
;
physiology
;
Cell Movement
;
genetics
;
physiology
;
Endothelial Cells
;
metabolism
;
Human Umbilical Vein Endothelial Cells
;
metabolism
;
Humans
;
MicroRNAs
;
genetics
;
metabolism
;
Neovascularization, Physiologic
;
genetics
;
physiology
;
Transforming Growth Factor beta2
;
genetics
;
metabolism
10.Brain-Derived Glia Maturation Factor β Participates in Lung Injury Induced by Acute Cerebral Ischemia by Increasing ROS in Endothelial Cells.
Fei-Fei XU ; Zi-Bin ZHANG ; Yang-Yang WANG ; Ting-Hua WANG
Neuroscience Bulletin 2018;34(6):1077-1090
Brain damage can cause lung injury. To explore the mechanism underlying the lung injury induced by acute cerebral ischemia (ACI), we established a middle cerebral artery occlusion (MCAO) model in male Sprague-Dawley rats. We focused on glia maturation factor β (GMFB) based on quantitative analysis of the global rat serum proteome. Polymerase chain reaction, western blotting, and immunofluorescence revealed that GMFB was over-expressed in astrocytes in the brains of rats subjected to MCAO. We cultured rat primary astrocytes and confirmed that GMFB was also up-regulated in primary astrocytes after oxygen-glucose deprivation (OGD). We subjected the primary astrocytes to Gmfb RNA interference before OGD and collected the conditioned medium (CM) after OGD. We then used the CM to culture pulmonary microvascular endothelial cells (PMVECs) acquired in advance and assessed their status. The viability of the PMVECs improved significantly when Gmfb was blocked. Moreover, ELISA assays revealed an elevation in GMFB concentration in the medium after OGD. Cell cultures containing recombinant GMFB showed increased levels of reactive oxygen species and a deterioration in the state of the cells. In conclusion, GMFB is up-regulated in astrocytes after ACI, and brain-derived GMFB damages PMVECs by increasing reactive oxygen species. GMFB might thus be an initiator of the lung injury induced by ACI.
Animals
;
Brain
;
metabolism
;
pathology
;
Brain Ischemia
;
complications
;
pathology
;
Bronchoalveolar Lavage Fluid
;
Cell Hypoxia
;
physiology
;
Cells, Cultured
;
Cerebrovascular Circulation
;
physiology
;
Chromatography, High Pressure Liquid
;
Culture Media, Conditioned
;
pharmacology
;
Disease Models, Animal
;
Endothelial Cells
;
metabolism
;
Gene Expression Regulation
;
physiology
;
Glia Maturation Factor
;
metabolism
;
In Situ Nick-End Labeling
;
Lung Injury
;
etiology
;
metabolism
;
pathology
;
Male
;
Neuroglia
;
metabolism
;
Neurologic Examination
;
Peroxidase
;
metabolism
;
Proteome
;
RNA Interference
;
physiology
;
RNA, Small Interfering
;
genetics
;
metabolism
;
Rats
;
Rats, Sprague-Dawley
;
Reactive Oxygen Species
;
metabolism
;
Tandem Mass Spectrometry

Result Analysis
Print
Save
E-mail