1.Mechanisms of Renshentang in Treating AS via Regulation of Endothelial Cell Inflammation Based on TRPV1
Ce CHU ; Yulu YUAN ; Zhen YANG ; Xuguang TAO ; Xiangyun CHEN ; Zhanzhan HE ; Yuxin ZHANG ; Yongqi XU ; Wanping CHEN ; Peizhang ZHAO ; Wenlai WANG ; Hongxia ZHAO
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(6):46-53
ObjectiveTo investigate the mechanisms by which Renshentang treats atherosclerosis (AS) in mice, focusing on the regulation of endothelial inflammatory responses mediated by transient receptor potential vanilloid subtype 1 (TRPV1). MethodsAn AS model was established in apolipoprotein E knockout (ApoE-/-) mice fed a high-fat diet. The mice were randomly divided into a simvastatin group (0.02 g·kg-1·d-1) and low-, medium-, and high-dose Renshentang groups (1.77, 3.54, 7.08 g·kg-1·d-1), with 12 mice in each group. ApoE-/- mice were fed a high-fat diet and treated simultaneously. C57BL/6J mice fed a normal diet served as the normal group (n=9). After continuous administration for 12 weeks, mice were anesthetized and the aortas were collected. Oil Red O staining was used to observe lipid plaque formation in the aorta. Hematoxylin-eosin (HE) staining was performed to examine pathological changes in the aortic root. Immunohistochemistry was used to analyze the levels of pro-inflammatory factors tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β), as well as the expression of TRPV1, phosphorylated phosphoinositide 3-kinase (p-PI3K), and phosphorylated protein kinase B (p-Akt) in the aortic root. Real-time quantitative polymerase chain reaction (Real-time PCR) was used to detect endothelial nitric oxide synthase (eNOS) mRNA expression in the aorta, and Western blot was used to detect TRPV1 protein expression. ResultsCompared with the normal group, the model group showed a significant increase in aortic plaque formation (P<0.01) and significantly elevated levels of TNF-α and IL-1β in the aortic root (P<0.01). The expression levels of TRPV1, p-PI3K, and p-Akt were decreased (P<0.05, P<0.01), and eNOS mRNA expression was reduced (P<0.05, P<0.01). Compared with the model group, all Renshentang groups significantly reduced aortic plaque formation (P<0.01), significantly decreased TNF-α and IL-1β levels (P<0.01), and markedly increased the expression levels of TRPV1, p-PI3K, p-Akt, and eNOS mRNA (P<0.05, P<0.01). ConclusionRenshentang may inhibit endothelial inflammation and suppress the formation of AS by increasing TRPV1 protein expression and up-regulating the PI3K/Akt/eNOS signaling pathway, which may be one of the molecular mechanisms underlying its therapeutic effect against AS.
2.Renshentang Alleviates Atherosclerosis in Mice by Targeting TRPV1 to Regulate Foam Cell Cholesterol Metabolism
Yulu YUAN ; Ce CHU ; Xuguang TAO ; Zhen YANG ; Xiangyun CHEN ; Zhanzhan HE ; Yongqi XU ; Yuxin ZHANG ; Peizhang ZHAO ; Wanping CHEN ; Hongxia ZHAO ; Wenlai WANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(17):11-19
ObjectiveTo explore the effects of Renshentang on atherosclerosis (AS) in mice based on the role of transient receptor potential vanilloid1 (TRPV1) in regulating cholesterol metabolism in foam cells. MethodsNine SPF-grade 8-week-old C57BL/6J mice were set as a normal group, and 60 ApoE-/- mice were randomized into model, positive drug (simvastatin, 0.02 g·kg-1·d-1), and low-, medium-, and high-dose (1.77, 3.54, 7.08 g·kg-1·d-1, respectively) Renshentang groups (n=12) according to body weight. The normal group was fed with a normal diet, and the other groups were fed with a high-fat diet and given corresponding drugs by oral gavage for the modeling of AS. The mice were administrated with corresponding drugs once a day for 12 weeks. After the last administration and fasting for 12 h, the aorta was collected. Plaque conditions, pathological changes, levels of total cholesterol (TC), triglcerides (TG), low-density lipoprotein-cholesterol (LDL-C), and high-density lipoprotein-cholesterol (HDL-C), and the expression of TRPV1, liver X receptor (LXR), inducible degrader of the low-density lipoprotein receptor (IDOL), and low-density lipoprotein receptor (LDLR) in the aortic tissue were observed and detected by gross oil red O staining, HE staining, Western blot, immunohistochemistry, and real-time PCR. ResultsCompared with the normal group, the model group presented obvious plaque deposition in the aorta, raised levels of TC, TG, and LDL-C in the serum (P<0.01), up-regulated expression level of LDLR in the aorta (P<0.01), lowered level of HDL-C in the serum, and down-regulated expression levels of TRPV1, LXR, and IDOL in the aorta (P<0.05, P<0.01). Compared with the model group, the positive drug and Renshentang at different doses alleviated AS, elevated the levels of HDL-C, TRPV1, LXR, and IDOL (P<0.05, P<0.01), while lowering the levels of TC, TG, LDL-C, and LDLR (P<0.05, P<0.01). ConclusionRenshentang has a lipid-lowering effect on AS mice. It can effectively reduce lipid deposition, lipid levels, and plaque area of AS mice by activating TRPV1 expression and regulating the LXR/IDOL/LDLR pathway.
3.Renshentang Alleviates Atherosclerosis in Mice by Targeting TRPV1 to Regulate Foam Cell Cholesterol Metabolism
Yulu YUAN ; Ce CHU ; Xuguang TAO ; Zhen YANG ; Xiangyun CHEN ; Zhanzhan HE ; Yongqi XU ; Yuxin ZHANG ; Peizhang ZHAO ; Wanping CHEN ; Hongxia ZHAO ; Wenlai WANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(17):11-19
ObjectiveTo explore the effects of Renshentang on atherosclerosis (AS) in mice based on the role of transient receptor potential vanilloid1 (TRPV1) in regulating cholesterol metabolism in foam cells. MethodsNine SPF-grade 8-week-old C57BL/6J mice were set as a normal group, and 60 ApoE-/- mice were randomized into model, positive drug (simvastatin, 0.02 g·kg-1·d-1), and low-, medium-, and high-dose (1.77, 3.54, 7.08 g·kg-1·d-1, respectively) Renshentang groups (n=12) according to body weight. The normal group was fed with a normal diet, and the other groups were fed with a high-fat diet and given corresponding drugs by oral gavage for the modeling of AS. The mice were administrated with corresponding drugs once a day for 12 weeks. After the last administration and fasting for 12 h, the aorta was collected. Plaque conditions, pathological changes, levels of total cholesterol (TC), triglcerides (TG), low-density lipoprotein-cholesterol (LDL-C), and high-density lipoprotein-cholesterol (HDL-C), and the expression of TRPV1, liver X receptor (LXR), inducible degrader of the low-density lipoprotein receptor (IDOL), and low-density lipoprotein receptor (LDLR) in the aortic tissue were observed and detected by gross oil red O staining, HE staining, Western blot, immunohistochemistry, and real-time PCR. ResultsCompared with the normal group, the model group presented obvious plaque deposition in the aorta, raised levels of TC, TG, and LDL-C in the serum (P<0.01), up-regulated expression level of LDLR in the aorta (P<0.01), lowered level of HDL-C in the serum, and down-regulated expression levels of TRPV1, LXR, and IDOL in the aorta (P<0.05, P<0.01). Compared with the model group, the positive drug and Renshentang at different doses alleviated AS, elevated the levels of HDL-C, TRPV1, LXR, and IDOL (P<0.05, P<0.01), while lowering the levels of TC, TG, LDL-C, and LDLR (P<0.05, P<0.01). ConclusionRenshentang has a lipid-lowering effect on AS mice. It can effectively reduce lipid deposition, lipid levels, and plaque area of AS mice by activating TRPV1 expression and regulating the LXR/IDOL/LDLR pathway.
4.Protective effect of sub-hypothermic mechanical perfusion combined with membrane lung oxygenation on a yorkshire model of brain injury after traumatic blood loss.
Xiang-Yu SONG ; Yang-Hui DONG ; Zhi-Bo JIA ; Lei-Jia CHEN ; Meng-Yi CUI ; Yan-Jun GUAN ; Bo-Yao YANG ; Si-Ce WANG ; Sheng-Feng CHEN ; Peng-Kai LI ; Heng CHEN ; Hao-Chen ZUO ; Zhan-Cheng YANG ; Wen-Jing XU ; Ya-Qun ZHAO ; Jiang PENG
Chinese Journal of Traumatology 2025;28(6):469-476
PURPOSE:
To investigate the protective effect of sub-hypothermic mechanical perfusion combined with membrane lung oxygenation on ischemic hypoxic injury of yorkshire brain tissue caused by traumatic blood loss.
METHODS:
This article performed a random controlled trial. Brain tissue of 7 yorkshire was selected and divided into the sub-low temperature anterograde machine perfusion group (n = 4) and the blank control group (n = 3) using the random number table method. A yorkshire model of brain tissue injury induced by traumatic blood loss was established. Firstly, the perfusion temperature and blood oxygen saturation were monitored in real-time during the perfusion process. The number of red blood cells, hemoglobin content, NA+, K+, and Ca2+ ions concentrations and pH of the perfusate were detected. Following perfusion, we specifically examined the parietal lobe to assess its water content. The prefrontal cortex and hippocampus were then dissected for histological evaluation, allowing us to investigate potential regional differences in tissue injury. The blank control group was sampled directly before perfusion. All statistical analyses and graphs were performed using GraphPad Prism 8.0 Student t-test. All tests were two-sided, and p value of less than 0.05 was considered to indicate statistical significance.
RESULTS:
The contents of red blood cells and hemoglobin during perfusion were maintained at normal levels but more red blood cells were destroyed 3 h after the perfusion. The blood oxygen saturation of the perfusion group was maintained at 95% - 98%. NA+ and K+ concentrations were normal most of the time during perfusion but increased significantly at about 4 h. The Ca2+ concentration remained within the normal range at each period. Glucose levels were slightly higher than the baseline level. The pH of the perfusion solution was slightly lower at the beginning of perfusion, and then gradually increased to the normal level. The water content of brain tissue in the sub-low and docile perfusion group was 78.95% ± 0.39%, which was significantly higher than that in the control group (75.27% ± 0.55%, t = 10.49, p < 0.001), and the difference was statistically significant. Compared with the blank control group, the structure and morphology of pyramidal neurons in the prefrontal cortex and CA1 region of the hippocampal gyrus were similar, and their integrity was better. The structural integrity of granulosa neurons was destroyed and cell edema increased in the perfusion group compared with the blank control group. Immunofluorescence staining for glail fibrillary acidic protein and Iba1, markers of glial cells, revealed well-preserved cell structures in the perfusion group. While there were indications of abnormal cellular activity, the analysis showed no significant difference in axon thickness or integrity compared to the 1-h blank control group.
CONCLUSIONS
Mild hypothermic machine perfusion can improve ischemia and hypoxia injury of yorkshire brain tissue caused by traumatic blood loss and delay the necrosis and apoptosis of yorkshire brain tissue by continuous oxygen supply, maintaining ion homeostasis and reducing tissue metabolism level.
Animals
;
Perfusion/methods*
;
Disease Models, Animal
;
Brain Injuries/etiology*
;
Swine
;
Male
;
Hypothermia, Induced/methods*
5.Zedoarondiol Inhibits Neovascularization in Atherosclerotic Plaques of ApoE-/- Mice by Reducing Platelet Exosomes-Derived MiR-let-7a.
Bei-Li XIE ; Bo-Ce SONG ; Ming-Wang LIU ; Wei WEN ; Yu-Xin YAN ; Meng-Jie GAO ; Lu-Lian JIANG ; Zhi-Die JIN ; Lin YANG ; Jian-Gang LIU ; Da-Zhuo SHI ; Fu-Hai ZHAO
Chinese journal of integrative medicine 2025;31(3):228-239
OBJECTIVE:
To investigate the effect of zedoarondiol on neovascularization of atherosclerotic (AS) plaque by exosomes experiment.
METHODS:
ApoE-/- mice were fed with high-fat diet to establish AS model and treated with high- and low-dose (10, 5 mg/kg daily) of zedoarondiol, respectively. After 14 weeks, the expressions of anti-angiogenic protein thrombospondin 1 (THBS-1) and its receptor CD36 in plaques, as well as platelet activation rate and exosome-derived miR-let-7a were detected. Then, zedoarondiol was used to intervene in platelets in vitro, and miR-let-7a was detected in platelet-derived exosomes (Pexo). Finally, human umbilical vein endothelial cells (HUVECs) were transfected with miR-let-7a mimics and treated with Pexo to observe the effect of miR-let-7a in Pexo on tube formation.
RESULTS:
Animal experiments showed that after treating with zedoarondiol, the neovascularization density in plaques of AS mice was significantly reduced, THBS-1 and CD36 increased, the platelet activation rate was markedly reduced, and the miR-let-7a level in Pexo was reduced (P<0.01). In vitro experiments, the platelet activation rate and miR-let-7a levels in Pexo were significantly reduced after zedoarondiol's intervention. Cell experiments showed that after Pexo's intervention, the tube length increased, and the transfection of miR-let-7a minics further increased the tube length of cells, while reducing the expressions of THBS-1 and CD36.
CONCLUSION
Zedoarondiol has the effect of inhibiting neovascularization within plaque in AS mice, and its mechanism may be potentially related to inhibiting platelet activation and reducing the Pexo-derived miRNA-let-7a level.
Animals
;
MicroRNAs/genetics*
;
Exosomes/drug effects*
;
Plaque, Atherosclerotic/genetics*
;
Neovascularization, Pathologic/genetics*
;
Human Umbilical Vein Endothelial Cells/metabolism*
;
Humans
;
Blood Platelets/drug effects*
;
Apolipoproteins E/deficiency*
;
Thrombospondin 1/metabolism*
;
CD36 Antigens/metabolism*
;
Platelet Activation/drug effects*
;
Male
;
Mice
;
Mice, Inbred C57BL
6.Improved prebiotic-based "shield" equipped probiotics for enhanced colon cancer therapy by polarizing M1 macrophages and regulating intestinal microbiota.
Yang WANG ; Xiaomin SU ; Yao LIU ; Lina HU ; Lin KANG ; Ce XU ; Zanya SUN ; Chenyu SUN ; Huishu GUO ; Shun SHEN
Acta Pharmaceutica Sinica B 2025;15(8):4225-4247
Probiotics play a crucial role in colon cancer treatment by metabolizing prebiotics to generate short-chain fatty acids (SCFAs). Colon cancer patients are frequently propositioned to supplement with probiotics to enhance the conversion and utilization of prebiotics. Nevertheless, the delivery and colonization of probiotics is hindered by the harsh conditions of gastrointestinal tract (GIT). Here, we devised a straightforward yet potent modified prebiotic-based "shield" (Gelatin-Inulin, GI), employing dietary inulin and natural polymer gelatin crosslinked via hydrogen bonding for enveloping Lactobacillus reuteri (Lr) to formulate synbiotic hydrogel capsules (Lr@Gl). The GI "shield" serves as a dynamic barrier, augmenting the resistance of Lr to gastric acid and facilitating its bioactivity and adherence in the GIT, synergizing with Lr to elicit an anti-tumor effect. Simultaneously, Lr@GI demonstrates anti-tumor effects by depleting glutathione to release reactive oxygen species, accompanied by the activation of NLRP3 (NOD-like receptor family pyrin domain containing 3), and the induction M1 macrophage polarization. Furthermore, Lr@GI can not only promote the recovery of intestinal barrier but also regulate intestinal flora, promoting the production of SCFAs and further exerting anti-tumor effect. Crucially, Lr@GI also potentiates the anti-tumor effect of 5-Fluorouracil. The construction and synergistic anti-tumor mechanism of synbiotic hydrogel capsules system provide valuable insights for gut microbial tumor therapy.
7.Development and application on a full process disease diagnosis and treatment assistance system based on generative artificial intelligence.
Wanjie YANG ; Hao FU ; Xiangfei MENG ; Changsong LI ; Ce YU ; Xinting ZHAO ; Weifeng LI ; Wei ZHAO ; Qi WU ; Zheng CHEN ; Chao CUI ; Song GAO ; Zhen WAN ; Jing HAN ; Weikang ZHAO ; Dong HAN ; Zhongzhuo JIANG ; Weirong XING ; Mou YANG ; Xuan MIAO ; Haibai SUN ; Zhiheng XING ; Junquan ZHANG ; Lixia SHI ; Li ZHANG
Chinese Critical Care Medicine 2025;37(5):477-483
The rapid development of artificial intelligence (AI), especially generative AI (GenAI), has already brought, and will continue to bring, revolutionary changes to our daily production and life, as well as create new opportunities and challenges for diagnostic and therapeutic practices in the medical field. Haihe Hospital of Tianjin University collaborates with the National Supercomputer Center in Tianjin, Tianjin University, and other institutions to carry out research in areas such as smart healthcare, smart services, and smart management. We have conducted research and development of a full-process disease diagnosis and treatment assistance system based on GenAI in the field of smart healthcare. The development of this project is of great significance. The first goal is to upgrade and transform the hospital's information center, organically integrate it with existing information systems, and provide the necessary computing power storage support for intelligent services within the hospital. We have implemented the localized deployment of three models: Tianhe "Tianyuan", WiNGPT, and DeepSeek. The second is to create a digital avatar of the chief physician/chief physician's voice and image by integrating multimodal intelligent interaction technology. With generative intelligence as the core, this solution provides patients with a visual medical interaction solution. The third is to achieve deep adaptation between generative intelligence and the entire process of patient medical treatment. In this project, we have developed assistant tools such as intelligent inquiry, intelligent diagnosis and recognition, intelligent treatment plan generation, and intelligent assisted medical record generation to improve the safety, quality, and efficiency of the diagnosis and treatment process. This study introduces the content of a full-process disease diagnosis and treatment assistance system, aiming to provide references and insights for the digital transformation of the healthcare industry.
Artificial Intelligence
;
Humans
;
Delivery of Health Care
;
Generative Artificial Intelligence
8.Sandstorm-driven Particulate Matter Exposure and Elevated COPD Hospitalization Risk in Arid Regions of China: A Spatiotemporal Epidemiological Analysis.
Hao ZHAO ; Ce LIU ; Er Kai ZHOU ; Bao Feng ZHOU ; Sheng LI ; Li HE ; Zhao Ru YANG ; Jia Bei JIAN ; Huan CHEN ; Huan Huan WEI ; Rong Rong CAO ; Bin LUO
Biomedical and Environmental Sciences 2025;38(11):1404-1416
OBJECTIVE:
Chronic obstructive pulmonary disease (COPD) is a major health concern in northwest China; however, the impact of particulate matter (PM) exposure during sand-dust storms (SDS) remains poorly understood. Therefore, this study aimed to investigate the association between PM exposure on SDS days and COPD hospitalization risk in arid regions.
METHODS:
Data on daily COPD hospitalizations were collected from 323 hospitals from 2018 to 2022, along with the corresponding air pollutant and meteorological data for each city in Gansu Province. Employing a space-time-stratified case-crossover design and conditional Poisson regression, we analyzed 265,379 COPD hospitalizations.
RESULTS:
PM exposure during SDS days significantly increased COPD hospitalization risk [relative risk ( RR) for PM 2.5, lag 3:1.028, 95% confidence interval ( CI): 1.021-1.034], particularly among men and the elderly, and during the cold season. The burden of PM exposure on COPD hospitalization was substantially high in Northwest China, especially in the arid and semi-arid regions.
CONCLUSION
Our findings revealed a positive correlation between PM exposure during SDS episodes and elevated hospitalization rates for COPD in arid and semi-arid zones in China. This highlights the urgency of developing region-specific public health strategies to address adverse respiratory outcomes associated with SDS-related air quality deterioration.
Humans
;
China/epidemiology*
;
Pulmonary Disease, Chronic Obstructive/chemically induced*
;
Particulate Matter/analysis*
;
Hospitalization/statistics & numerical data*
;
Male
;
Female
;
Middle Aged
;
Aged
;
Air Pollutants/analysis*
;
Environmental Exposure/adverse effects*
;
Spatio-Temporal Analysis
;
Adult
;
Sand
;
Air Pollution
9.Effect of Qingfei Paidu Decoction on Acute Lung Injury Model Mice Based on TRPV1/TRPA1 Heat-sensitive Channel
Yulu YUAN ; Zhanzhan HE ; Ce CHU ; Xuguang TAO ; Zhen YANG ; Xiangyun CHEN ; Wei DING ; Yongqi XU ; Yuxin ZHANG ; Peizhang ZHAO ; Wanping CHEN ; Hongxia ZHAO ; Wenlai WANG
Chinese Journal of Experimental Traditional Medical Formulae 2024;30(24):95-102
ObjectiveTo investigate the mechanism and effect of Qingfei Paidu decoction on transient receptor potential vanilloid-1/Transient receptor potential ankyrin1 (TRPV1/TRPA1) based on heat-sensitive channel and inflammatory response. MethodAccording to body weight, 80 8-week-old C57BL/6 mice were randomly divided into the normal group, model group, dexamethasone group (5 mg·kg-1), and low-dose, medium-dose, and high-dose groups of Qingfei Paidu decoction (14.865, 29.73, 59.46 g·kg-1), with 12 mice in each group. In addition to the normal group, the other groups were administered 20 μL (1×10-3 g·kg-1) to each mouse by airway infusion to establish the acute lung injury (ALI) model. In the administration group, the drug was given 1 h after modeling and again after an interval of 24 h. The lung tissue was taken 36 h after modeling. Double lung wet/dry weight ratio(W/D), hematoxylin-eosin (HE) staining, enzyme-linked immunosorbent assay (ELISA), and Western blot were used to observe and detect the pathological changes of lung tissue, expression levels of inflammatory cytokine tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6), and expressions of TRPV1 and TRPA1 proteins in heat-sensitive channel, nuclear factor kappa-B (NF-κB), inhibitor of NF-κB (IκBα) in inflammatory pathway, and phosphorylated proteins. The phosphorylated protein/total protein ratio was calculated. ResultCompared with that in the normal group, the lung tissue of mice in the model group was seriously damaged, and pulmonary capillary permeability increased. Alveolar capillary congestion and dilation destroyed the complete structure of the alveolar, and the alveolar wall thickened. A large number of inflammatory cells and red blood cells were infiltrated, and pulmonary edema was significantly aggravated. The expressions of TNF-α, IL-6, TRPV1, TRPA1, phosphorylated NF-κB p65/NF-κB p65, and phosphorylated IκBα/IκBα were significantly increased (P<0.01), and the whole lung W/D was significantly increased (P<0.01). Compared with the model group, the dexamethasone group and low-dose, medium-dose, and high-dose groups of Qingfei Paidu decoction could significantly improve pulmonary edema. TNF-α, IL-6, TRPV1, TRPA1, lung tissue NF-κB p65, and IκBα phosphorylated protein/total protein ratio decreased significantly (P<0.05, P<0.01). The whole lung W/D also decreased significantly (P<0.05, P<0.01). ConclusionQingfei Paidu decoction has anti-inflammatory and protective effects on LPS-ALI mice, which can effectively reduce inflammation, induce diuresis, and alleviate edema. Its mechanism may be related to the regulation of the expression of TRPA1 and TRPV1 and the inhibition of the activation of the NF-κB pathway.
10.Progress of transcatheter aortic valve replacement in 2023
Mo-Yang WANG ; Zheng ZHOU ; Guan-Nan NIU ; Yang CHEN ; De-Jing FENG ; Xiang-Ming HU ; Wen-Ce SHI ; Yong-Jian WU
Chinese Journal of Interventional Cardiology 2024;32(1):14-19
Transcatheter aortic valve replacement(TAVR)has become one of the effective methods for treating patients with aortic valve disease.With the continuous maturity of technology,innovation of instruments and increasing experience,the indications for TAVR has been expanded.Following international trends,the number of TAVR in China has steadily increased with each passing year.In 2023,the long-term follow-up results of TAVR in low-risk AS patients further confirm the long-term benefits of TAVR.The relevant research on TAVR for patients with aortic regurgitation and patients with bicuspid aortic stenosis provide evidence support for the expansion of TAVR indications.At the same time,the development of valve devices and new technological innovations are emerging in an endless stream,and the new concept of full life cycle management is increasingly being valued.Especially in China,the development of local devices is progressing rapidly,and multiple devices have entered the clinical research stage.The clinical manifestations and research results are worth pursuing.

Result Analysis
Print
Save
E-mail