1.Currently Clinical Views on Genetics of Wilson's Disease.
Chen CHEN ; Bo SHEN ; Jia-Jia XIAO ; Rong WU ; Sarah Jane Duff CANNING ; Xiao-Ping WANG
Chinese Medical Journal 2015;128(13):1826-1830
OBJECTIVEThe objective of this study was to review the research on clinical genetics of Wilson's disease (WD).
DATA SOURCESWe searched documents from PubMed and Wanfang databases both in English and Chinese up to 2014 using the keywords WD in combination with genetic, ATP7B gene, gene mutation, genotype, phenotype.
STUDY SELECTIONPublications about the ATP7B gene and protein function associated with clinical features were selected.
RESULTSWilson's disease, also named hepatolenticular degeneration, is an autosomal recessive genetic disorder characterized by abnormal copper metabolism caused by mutations to the copper-transporting gene ATP7B. Decreased biliary copper excretion and reduced incorporation of copper into apoceruloplasmin caused by defunctionalization of ATP7B protein lead to accumulation of copper in many tissues and organs, including liver, brain, and cornea, finally resulting in liver disease and extrapyramidal symptoms. It is the most common genetic neurological disorder in the onset of adolescents, second to muscular dystrophy in China. Early diagnosis and medical therapy are of great significance for improving the prognosis of WD patients. However, diagnosis of this disease is usually difficult because of its complicated phenotypes. In the last 10 years, an increasing number of clinical studies have used molecular genetics techniques. Improved diagnosis and prediction of the progression of this disease at the molecular level will aid in the development of more individualized and effective interventions, which is a key to transition from molecular genetic research to the clinical study.
CONCLUSIONSClinical genetics studies are necessary to understand the mechanism underlying WD at the molecular level from the genotype to the phenotype. Clinical genetics research benefits newly emerging medical treatments including stem cell transplantation and gene therapy for WD patients.
Adenosine Triphosphatases ; genetics ; Cation Transport Proteins ; genetics ; Copper-transporting ATPases ; Hepatolenticular Degeneration ; genetics ; Humans ; Phenotype
2.Analysis of CNNM2 gene variant in a child with Hypomagnesemia, seizures, and mental retardation syndrome.
Lin WANG ; Hongwei ZHANG ; Junxia LUO ; Fang QI ; Yong LIU ; Kaihui ZHANG ; Zaifen GAO
Chinese Journal of Medical Genetics 2023;40(8):1004-1008
OBJECTIVE:
To explore the genetic etiology of a child with Hypomagnesemia, epilepsy and mental retardation syndrome (HSMR).
METHODS:
A child who was admitted to the Children's Hospital of Shandong University on July 9, 2021 due to repeated convulsions for 2 months was selected as the study subject. Clinical data of the child was collected. Peripheral blood samples of the child and his pedigree members were collected for the extraction of genomic DNA. Whole exome sequencing was carried out, and candidate variant was verified by Sanger sequencing and bioinformatic analysis.
RESULTS:
The child, a 1-year-and-7-month-old male, had presented with epilepsy and global developmental delay. Serological testing revealed that he has low serum magnesium. Genetic testing showed that the child has harbored a heterozygous c.1448delT (p.Val483GlyfsTer29) variant of the CNNM2 gene, which was de novo in origin. The variant has caused substitution of the Valine at position 483 by Glycine and formation of a termination codon after 29 amino acids at downstream. As predicted by Swiss-Model online software, the variant may alter the protein structure, resulting in a truncation. Based on the guidelines from the American College of Medical Genetics and Genomics (ACMG), the c.1448delT (p.Val483GlyfsTer29) was predicted as a pathogenic variant (PVS1+PS2+PM2_Supporting+PP4).
CONCLUSION
The heterozygous c.1448delT variant of the CNNM2 gene probably underlay the HSMR in this child. Above finding has enriched the phenotype-genotype spectrum of the CNNM2 gene.
Humans
;
Male
;
Cation Transport Proteins
;
Computational Biology
;
Ethnicity
;
Intellectual Disability/genetics*
;
Magnesium
;
Mutation
;
Seizures/genetics*
;
Infant
3.A pair of transporters controls mitochondrial Zn2+ levels to maintain mitochondrial homeostasis.
Tengfei MA ; Liyuan ZHAO ; Jie ZHANG ; Ruofeng TANG ; Xin WANG ; Nan LIU ; Qian ZHANG ; Fengyang WANG ; Meijiao LI ; Qian SHAN ; Yang YANG ; Qiuyuan YIN ; Limei YANG ; Qiwen GAN ; Chonglin YANG
Protein & Cell 2022;13(3):180-202
Zn2+ is required for the activity of many mitochondrial proteins, which regulate mitochondrial dynamics, apoptosis and mitophagy. However, it is not understood how the proper mitochondrial Zn2+ level is achieved to maintain mitochondrial homeostasis. Using Caenorhabditis elegans, we reveal here that a pair of mitochondrion-localized transporters controls the mitochondrial level of Zn2+. We demonstrate that SLC-30A9/ZnT9 is a mitochondrial Zn2+ exporter. Loss of SLC-30A9 leads to mitochondrial Zn2+ accumulation, which damages mitochondria, impairs animal development and shortens the life span. We further identify SLC-25A25/SCaMC-2 as an important regulator of mitochondrial Zn2+ import. Loss of SLC-25A25 suppresses the abnormal mitochondrial Zn2+ accumulation and defective mitochondrial structure and functions caused by loss of SLC-30A9. Moreover, we reveal that the endoplasmic reticulum contains the Zn2+ pool from which mitochondrial Zn2+ is imported. These findings establish the molecular basis for controlling the correct mitochondrial Zn2+ levels for normal mitochondrial structure and functions.
Animals
;
Caenorhabditis elegans/metabolism*
;
Cation Transport Proteins/genetics*
;
Homeostasis
;
Mitochondria/metabolism*
;
Zinc/metabolism*
4.Structure and function of heavy metal transporter P(1B)-ATPase in plant: a review.
Yuxiu ZHANG ; Yuanya ZHANG ; Tao SUN ; Tuanyao CHAI
Chinese Journal of Biotechnology 2010;26(6):715-725
The regulation of the heavy-metal accumulation in vivo for plant survival is very complex. The metal cation transporter plays key roles in the metabolic process. P(1B)-ATPases are the only subgroup of P-ATPases that contribute to heavy metal homeostasis presented in most organisms. Arabidopsis thaliana contains eight genes encoding P(1B)-ATPases. The current reports show that the functions of P(1B)-ATPases are involved in maintaining metal homeostasis, transporting and detoxification in plants. P(1B)-ATPases not only mediated metal ion mobilization and uptake in roots, but also contribute to the metal transport, storage and tolerance in shoots, especially in heavy metal hyperaccumulators. In this paper, we reviewed and discussed the evolution, classification, structure and function of P(1B)-ATPases in plants. HMAs-transgenic manipulation could be a feasible approach for phytoremediation and mineral nutrition fortification.
Adenosine Triphosphatases
;
genetics
;
metabolism
;
Biodegradation, Environmental
;
Biological Transport
;
physiology
;
Cation Transport Proteins
;
classification
;
genetics
;
metabolism
;
Metals, Heavy
;
metabolism
;
Plant Proteins
;
genetics
;
metabolism
;
Plants
;
enzymology
;
genetics
;
metabolism
7.Analysis of SLC39A4 gene mutation in a patient with acrodermatitis enteropathica.
Yunzhu MU ; Zhengzhong ZHANG ; Ping YANG ; Hao YANG ; Yiping LIU ; Linli LIU ; Xing CHEN
Chinese Journal of Medical Genetics 2017;34(3):387-389
OBJECTIVETo detect pathogenic mutation of the SLC39A4 gene in a male patient with acrodermatitis enteropathica (AE).
METHODSPeripheral venous blood sample and clinical data from the patient and his parents were collected. One hundred unrelated healthy individuals were recruited as controls. All coding exons and flanking exon-intron sequences of the SLC39A4 gene were analyzed by PCR and direct sequencing.
RESULTSThe results revealed that the patient and his mother have both carried a novel frame-shift mutation c.1110InsG (p.Gly370GlyfsX47 to TGA) in exon 6. A novel nonsense mutation c.958C to T (p.Q320X) in exon 5 was also detected in the patient and his father and grandmother. This novel mutation was not detected in the unaffected family members and 100 unrelated healthy controls.
CONCLUSIONThe novel frame-shift mutation c.1110InsG (p.Gly370GlyfsX47 to TGA) derived from the mother and nonsense mutation c.958C to T (p.Q320X) of the SLC39A4 gene derived from the father may underlie the disease in the patient.
Acrodermatitis ; genetics ; Adolescent ; Base Sequence ; Cation Transport Proteins ; genetics ; Exons ; Homozygote ; Humans ; Male ; Molecular Sequence Data ; Mutation ; Pedigree ; Zinc ; deficiency
8.Functional characterization of a potassium transporter gene NrHAK1 in Nicotiana rustica.
Zhao-kui GUO ; Qian YANG ; Xiu-qing WAN ; Pei-qiang YAN
Journal of Zhejiang University. Science. B 2008;9(12):944-952
The purpose of this study is to investigate the function of a novel potassium transporter gene (NrHAK1) isolated from Nicotiana rustica roots using yeast complement and real-time PCR technique. The complementary DNA (cDNA) of NrHAK1, 2 488 bp long, contains an open reading frame (ORF) of 2 334 bp encoding a protein of 777 amino acids (87.6 kDa) with 12 predicted transmembrane domains. The NrHAK1 protein shows a high sequence similarity to those of high-affinity potassium transporters in Mesembryanthemum, Phytolacca acinosa, Arabidopsis thaliana, and so on. We found that the NrHAK1 gene could complement the yeast-mutant defect in K+ uptake. Among several tissues surveyed, the expression level of NrHAK1 was most abundant in the root tip and was up-regulated when exposed to potassium starvation. Moreover, the transcript accumulation was significantly reduced by adding 5 mmol/L NH4+ to the solution. These results suggest that NrHAK1 plays an important role in potassium absorption in N. rustica.
Cation Transport Proteins
;
chemistry
;
genetics
;
physiology
;
Plant Proteins
;
chemistry
;
genetics
;
physiology
;
Potassium
;
metabolism
;
Quaternary Ammonium Compounds
;
pharmacology
;
Sodium
;
pharmacology
;
Tobacco
;
genetics
;
metabolism
9.Establishment of MDCK cell models expressing human MATE1 or co-expressing with human OCT1 or OCT2.
Hong-mei LEI ; Si-yuan SUN ; Li-ping LI ; Mei-juan TU ; Hui ZHOU ; Su ZENG ; Hui-di JIANG
Acta Pharmaceutica Sinica 2015;50(7):842-847
To establish single- and double-transfected transgenic cells stably expressing hMATE1, hMATE1 cDNA was cloned by RT-PCR from human cryopreserved kidney tissue, and subcloned into pcDNA3.1(+) plasmid by virtue of both HindIII and Kpn I restriction enzyme sites. Subsequently, the recombined pcDNA3.1(+)- hMATE1 plasmid was transfected into MDCK, MDCK-hOCT1 or MDCK-hOCT2 cells using Lipofectamine 2000 Reagent. After a 14-day-cultivation with hygromycin B at the concentration of 400 µg · mL(-1), all clones were screened with DAPI and MPP+ as substrates to identify the best candidate. The mRNA content of hMATE1, the cellular accumulation of metformin with or without cimetidine as inhibitor, or transportation of cimetidine was further valuated. The results showed that all of the three cell models over expressed hMATE1 mRNA. The cellular accumulation of metformin in MDCK-hMATE1 was 17.6 folds of the control cell, which was significantly inhibited by 100 µmol · L(-1) cimetidine. The transcellular transport parameter net efflux ratios of cimetidine across MDCK-hOCT1/hMATE1 and MDCK-hOCT2/hMATE1 monolayer were 17.5 and 3.65, respectively. In conclusion, cell models with good hMATE1 function have been established successfully, which can be applied to study the drug transport or drug-drug interaction involving hMATE1 alone or together with hOCT1/2 in vitro.
Animals
;
Biological Transport
;
Cimetidine
;
pharmacology
;
DNA, Complementary
;
Dogs
;
Drug Interactions
;
Humans
;
Madin Darby Canine Kidney Cells
;
Metformin
;
pharmacology
;
Organic Cation Transport Proteins
;
genetics
;
metabolism
;
Transfection
10.Expressions of SLC22A14 and SPAG6 proteins in the ejaculated sperm of idiopathic asthenozoospermia patients.
Fang-Yuan HUO ; Yu-Shan LI ; Xi-Yang YANG ; Quan-Xian WANG ; Jun-Jie LIU ; Lin-Kai WANG ; Yan-Hua SU ; Lin SUN
National Journal of Andrology 2017;23(8):703-707
Objective:
To investigate the expressions of solute carrier family 22 member 14 (SLC22A14) and sperm-associated antigen 6 (SPAG6) in the sperm of idiopathic asthenospermia men.
METHODS:
We collected semen samples from 50 idiopathic asthenozoospermia patients and another 50 normal sperm donors, purified the sperm by discontinuous density centrifugation on Percoll gradients, and then determined the mRNA and protein expressions of SLC22A14 and SPAG6 by RT-PCR and Western blot, respectively.
RESULTS:
Compared with the normal controls, the idiopathic asthenozoospermia patients showed significantly decreased mRNA expressions of SLC22A14 (0.77 ± 0.08 vs 0.53 ± 0.10, P<0.01) and SPAG6 (0.78 ± 0.09 vs0.52 ± 0.10 , P<0.01) and protein expressions of SLC22A14 (0.80 ± 0.09 vs 0.55 ± 0.10 , P<0.01) and SPAG6 (0.78 ± 0.09 vs 0.56 ± 0.09, P<0.01).
CONCLUSIONS
T The expressions of SLC22A14 and SPAG6 are reduced in the sperm of the patients with idiopathic asthenospermia, which may be one of the important causes of asthenospermia.
Asthenozoospermia
;
metabolism
;
Blotting, Western
;
Ejaculation
;
Humans
;
Male
;
Microtubule Proteins
;
genetics
;
metabolism
;
Organic Cation Transport Proteins
;
genetics
;
metabolism
;
Proteomics
;
RNA, Messenger
;
metabolism
;
Sperm Motility
;
Spermatozoa
;
metabolism