1.Prediction of superantigen active sites and clonal expression of staphylococcal enterotoxin-like W.
Yu Hua YANG ; Xin KU ; Ya Nan GONG ; Fan Liang MENG ; Dong bo BU ; Ya Hui GUO ; Xiao Yue WEI ; Li Jin LONG ; Jia Ming FAN ; Mao Jun ZHANG ; Jian Zhong ZHANG ; Xiao Mei YAN
Chinese Journal of Epidemiology 2023;44(4):629-635
Objective: The docking and superantigen activity sites of staphylococcal enterotoxin-like W (SElW) and T cell receptor (TCR) were predicted, and its SElW was cloned, expressed and purified. Methods: AlphaFold was used to predict the 3D structure of SElW protein monomers, and the protein models were evaluated with the help of the SAVES online server from ERRAT, Ramachandran plot, and Verify_3D. The ZDOCK server simulates the docking conformation of SElW and TCR, and the amino acid sequences of SElW and other serotype enterotoxins were aligned. The primers were designed to amplify selw, and the fragment was recombined into the pMD18-T vector and sequenced. Then recombinant plasmid pMD18-T was digested with BamHⅠand Hind Ⅲ. The target fragment was recombined into the expression plasmid pET-28a(+). After identification of the recombinant plasmid, the protein expression was induced by isopropyl-beta-D- thiogalactopyranoside. The SElW expressed in the supernatant was purified by affinity chromatography and quantified by the BCA method. Results: The predicted three-dimensional structure showed that the SElW protein was composed of two domains, the amino-terminal and the carboxy-terminal. The amino-terminal domain was composed of 3 α-helices and 6 β-sheets, and the carboxy-terminal domain included 2 α-helices and 7 antiparallel β-sheets composition. The overall quality factor score of the SElW protein model was 98.08, with 93.24% of the amino acids having a Verify_3D score ≥0.2 and no amino acids located in disallowed regions. The docking conformation with the highest score (1 521.328) was selected as the analysis object, and the 19 hydrogen bonds between the corresponding amino acid residues of SElW and TCR were analyzed by PyMOL. Combined with sequence alignment and the published data, this study predicted and found five important superantigen active sites, namely Y18, N19, W55, C88, and C98. The highly purified soluble recombinant protein SElW was obtained with cloning, expression, and protein purification. Conclusions: The study found five superantigen active sites in SElW protein that need special attention and successfully constructed and expressed the SElW protein, which laid the foundation for further exploration of the immune recognition mechanism of SElW.
Humans
;
Enterotoxins/genetics*
;
Superantigens/genetics*
;
Catalytic Domain
;
Selenoprotein W/metabolism*
;
Receptors, Antigen, T-Cell
2.Glucose-6 phosphatase catalytic subunit inhibits the proliferation of liver cancer cells by inducing cell cycle arrest.
Xue LIN ; Xuan Ming PAN ; Zi Ke PENG ; Kai WANG ; Ni TANG
Chinese Journal of Hepatology 2022;30(2):213-219
Objective: To investigate the effects of glucose-6-phosphatase catalytic subunit (G6PC) recombinant adenovirus on proliferation and cell cycle regulation of liver cancer cells. Methods: Recombinant adenovirus AdG6PC was constructed. Huh7 cells and SK-Hep1 cells were set as Mock, AdGFP and AdG6PC group. Cell proliferation and clone formation assay were used to observe the proliferation of liver cancer cells. Transwell and scratch assay were used to observe the invasion and migration of liver cancer cells. Cell cycle flow cytometry assay was used to analyze the effect of G6PC overexpression on the proliferation cycle of liver cancer cells. Western blot was used to detect the effect of G6PC overexpression on the cell-cycle protein expression in liver cancer cells. Results: The recombinant adenovirus AdG6PC was successfully constructed. Huh7 and SK-Hep1 cells proliferation assay showed that the number of proliferating cells in the AdG6PC group was significantly lower than the other two groups (P < 0.05). Clone formation assay showed that the number of clones was significantly lower in AdG6PC than the other two groups (P < 0.05), suggesting that G6PC overexpression could significantly inhibit the proliferation of liver cancer cells. Transwell assay showed that the number of cell migration was significantly lower in AdG6PC than the other two groups (P < 0.05). Scratch repair rate was significantly lower in AdG6PC than the other two groups (P < 0.05), suggesting that G6PC overexpression can significantly inhibit the invasion and migration of liver cancer cells. Cell cycle flow cytometry showed that G6PC overexpression had significantly inhibited the Huh7 cells G(1)/S phase transition. Western blot result showed that G6PC overexpression had down-regulated the proliferation in cell-cycle related proteins expression. Conclusion: G6PC inhibits the proliferation, cell-cycle related expression, and migration of liver cancer cells by inhibiting the G(1)/S phase transition.
Catalytic Domain
;
Cell Cycle Checkpoints
;
Cell Line, Tumor
;
Cell Proliferation
;
Gene Expression Regulation, Neoplastic
;
Glucose-6-Phosphatase/metabolism*
;
Humans
;
Liver Neoplasms/genetics*
3.Key active sites of proteases and protease inhibitors: a review.
Jie ZHANG ; Xi YANG ; Youshan LI
Chinese Journal of Biotechnology 2021;37(2):561-579
Proteases are widely found in organisms participating in the decomposition of proteins to maintain the organisms' normal life activities. Protease inhibitors regulate the activities of target proteases by binding to their active sites, thereby affecting protein metabolism. The key amino acid mutations in proteases and protease inhibitors can affect their physiological functions, stability, catalytic activity, and inhibition specificity. More active, stable, specific, environmentally friendly and cheap proteases and protease inhibitors might be obtained by excavating various natural mutants of proteases and protease inhibitors, analyzing their key active sites by using protein engineering methods. Here, we review the studies on proteases' key active sites and protease inhibitors to deepen the understanding of the active mechanism of proteases and their inhibitors.
Binding Sites
;
Catalytic Domain
;
Endopeptidases
;
Peptide Hydrolases/genetics*
;
Protease Inhibitors
;
Proteins
4.Preparation and crystallization of Polygonum cuspidatum benzalacetone synthase.
Wenrui MA ; Chunmei LIU ; Mingfeng YANG ; Feiyan XUE ; Qing CHEN ; Lanqing MA ; Heshu LÜ
Chinese Journal of Biotechnology 2016;32(2):250-258
The chalcone synthase (CHS) superfamily of the type III polyketide synthases (PKSs) generates backbones of a variety of plant secondary metabolites. Benzalacetone synthase (BAS) catalyzes a condensation reaction of decarboxylation between the substrates of 4-coumaric coenzyme A and malonyl coenzyme A to generate benzylidene acetone, whose derivatives are series of compounds with various biological activities. A BAS gene Pcpks2 and a bifunctional CHS/BAS PcPKSI were isolated from medicinal plant P. cuspidatum. Crystallographic and structure-based mutagenesis studies indicate that the functional diversity of the CHS-superfamily enzymes is principally derived from small modifications of the active site architecture. In order to obtain an understanding of the biosynthesis of polyketides in P. cuspidatum, which has been poorly described, as well as of its activation mechanism, PcPKS2 was overexpressed in Escherichia coli as a C-terminally poly-His-tagged fusion protein, purified to homogeneity and crystallized, which is helpful for the clarification of the catalytic mechanism of the enzyme and lays the foundation for its genetic engineering manipulation.
Butanones
;
Catalytic Domain
;
Crystallization
;
Fallopia japonica
;
enzymology
;
Polyketide Synthases
;
genetics
;
metabolism
5.Non-catalytic roles for TET1 protein negatively regulating neuronal differentiation through srGAP3 in neuroblastoma cells.
Jie GAO ; Yue MA ; Hua-Lin FU ; Qian LUO ; Zhen WANG ; Yu-Huan XIAO ; Hao YANG ; Da-Xiang CUI ; Wei-Lin JIN
Protein & Cell 2016;7(5):351-361
The methylcytosine dioxygenases TET proteins (TET1, TET2, and TET3) play important regulatory roles in neural function. In this study, we investigated the role of TET proteins in neuronal differentiation using Neuro2a cells as a model. We observed that knockdown of TET1, TET2 or TET3 promoted neuronal differentiation of Neuro2a cells, and their overexpression inhibited VPA (valproic acid)-induced neuronal differentiation, suggesting all three TET proteins negatively regulate neuronal differentiation of Neuro2a cells. Interestingly, the inducing activity of TET protein is independent of its enzymatic activity. Our previous studies have demonstrated that srGAP3 can negatively regulate neuronal differentiation of Neuro2a cells. Furthermore, we revealed that TET1 could positively regulate srGAP3 expression independent of its catalytic activity, and srGAP3 is required for TET-mediated neuronal differentiation of Neuro2a cells. The results presented here may facilitate better understanding of the role of TET proteins in neuronal differentiation, and provide a possible therapy target for neuroblastoma.
Animals
;
Catalytic Domain
;
Cell Differentiation
;
drug effects
;
physiology
;
Cell Line, Tumor
;
DNA-Binding Proteins
;
antagonists & inhibitors
;
genetics
;
metabolism
;
Enzyme Inhibitors
;
pharmacology
;
GTPase-Activating Proteins
;
genetics
;
metabolism
;
Immunohistochemistry
;
Mice
;
Microscopy, Fluorescence
;
Neuroblastoma
;
metabolism
;
pathology
;
Protein Isoforms
;
antagonists & inhibitors
;
genetics
;
metabolism
;
Proto-Oncogene Proteins
;
antagonists & inhibitors
;
genetics
;
metabolism
;
RNA Interference
;
RNA, Messenger
;
metabolism
;
RNA, Small Interfering
;
metabolism
;
Valproic Acid
;
pharmacology
7.The structure of WbnH in a near active state.
Fengzhi LI ; Siwei LI ; Xiaofen LIU ; Xue YANG ; Peng WANG ; Yuequan SHEN
Protein & Cell 2015;6(8):615-618
Binding Sites
;
Catalytic Domain
;
Crystallography, X-Ray
;
Escherichia coli
;
genetics
;
metabolism
;
Escherichia coli Proteins
;
chemistry
;
genetics
;
metabolism
;
Models, Molecular
;
N-Acetylgalactosaminyltransferases
;
chemistry
;
genetics
;
metabolism
;
Protein Structure, Secondary
;
Protein Structure, Tertiary
;
Substrate Specificity
8.Mechanism of the Rpn13-induced activation of Uch37.
Lianying JIAO ; Songying OUYANG ; Neil SHAW ; Gaojie SONG ; Yingang FENG ; Fengfeng NIU ; Weicheng QIU ; Hongtao ZHU ; Li-Wei HUNG ; Xiaobing ZUO ; V ELEONORA SHTYKOVA ; Ping ZHU ; Yu-Hui DONG ; Ruxiang XU ; Zhi-Jie LIU
Protein & Cell 2014;5(8):616-630
Uch37 is a de-ubiquitinating enzyme that is activated by Rpn13 and involved in the proteasomal degradation of proteins. The full-length Uch37 was shown to exhibit low iso-peptidase activity and is thought to be auto-inhibited. Structural comparisons revealed that within a homo-dimer of Uch37, each of the catalytic domains was blocking the other's ubiquitin (Ub)-binding site. This blockage likely prevented Ub from entering the active site of Uch37 and might form the basis of auto-inhibition. To understand the mode of auto-inhibition clearly and shed light on the activation mechanism of Uch37 by Rpn13, we investigated the Uch37-Rpn13 complex using a combination of mutagenesis, biochemical, NMR, and small-angle X-ray scattering (SAXS) techniques. Our results also proved that Uch37 oligomerized in solution and had very low activity against the fluorogenic substrate ubiquitin-7-amino-4-methylcoumarin (Ub-AMC) of de-ubiquitinating enzymes. Uch37Δ(Hb,Hc,KEKE), a truncation removal of the C-terminal extension region (residues 256-329) converted oligomeric Uch37 into a monomeric form that exhibited iso-peptidase activity comparable to that of a truncation-containing the Uch37 catalytic domain only. We also demonstrated that Rpn13C (Rpn13 residues 270-407) could disrupt the oligomerization of Uch37 by sequestering Uch37 and forming a Uch37-Rpn13 complex. Uch37 was activated in such a complex, exhibiting 12-fold-higher activity than Uch37 alone. Time-resolved SAXS (TR-SAXS) and FRET experiments supported the proposed mode of auto-inhibition and the activation mechanism of Uch37 by Rpn13. Rpn13 activated Uch37 by forming a 1:1 stoichiometric complex in which the active site of Uch37 was accessible to Ub.
Binding Sites
;
Catalytic Domain
;
Chromatography, Gel
;
Crystallography, X-Ray
;
Humans
;
Membrane Glycoproteins
;
chemistry
;
genetics
;
metabolism
;
Nuclear Magnetic Resonance, Biomolecular
;
Protein Binding
;
Protein Conformation
;
Protein Multimerization
;
Scattering, Small Angle
;
Ubiquitin Thiolesterase
;
chemistry
;
genetics
;
metabolism
;
Ultracentrifugation
9.Elimination of inter-domain interactions increases the cleavage fidelity of the restriction endonuclease DraIII.
Wei ZHUO ; Xuhui LAI ; Liqing ZHANG ; Siu-Hong CHAN ; Fengjuan LI ; Zhenyu ZHU ; Maojun YANG ; Dapeng SUN
Protein & Cell 2014;5(5):357-368
DraIII is a type IIP restriction endonucleases (REases) that recognizes and creates a double strand break within the gapped palindromic sequence CAC↑NNN↓GTG of double-stranded DNA (↑ indicates nicking on the bottom strand; ↓ indicates nicking on the top strand). However, wild type DraIII shows significant star activity. In this study, it was found that the prominent star site is CAT↑GTT↓GTG, consisting of a star 5' half (CAT) and a canonical 3' half (GTG). DraIII nicks the 3' canonical half site at a faster rate than the 5' star half site, in contrast to the similar rate with the canonical full site. The crystal structure of the DraIII protein was solved. It indicated, as supported by mutagenesis, that DraIII possesses a ββα-metal HNH active site. The structure revealed extensive intra-molecular interactions between the N-terminal domain and the C-terminal domain containing the HNH active site. Disruptions of these interactions through site-directed mutagenesis drastically increased cleavage fidelity. The understanding of fidelity mechanisms will enable generation of high fidelity REases.
Amino Acid Sequence
;
Base Sequence
;
Calorimetry, Differential Scanning
;
Catalytic Domain
;
Crystallography, X-Ray
;
DNA
;
metabolism
;
DNA Cleavage
;
Deoxyribonucleases, Type II Site-Specific
;
chemistry
;
genetics
;
metabolism
;
Escherichia coli
;
metabolism
;
Molecular Sequence Data
;
Mutagenesis, Site-Directed
;
Recombinant Proteins
;
chemistry
;
genetics
;
metabolism
;
Sequence Alignment
;
Substrate Specificity
10.Molecular engineering of cellulase catalytic domain based on glycoside hydrolase family.
Xiaomei ZHANG ; Dandan LI ; Lushan WANG ; Yue ZHAO ; Guanjun CHEN
Chinese Journal of Biotechnology 2013;29(4):422-433
Molecular engineering of cellulases can improve enzymatic activity and efficiency. Recently, the Carbohydrate-Active enZYmes Database (CAZy), including glycoside hydrolase (GH) families, has been established with the development of Omics and structural measurement technologies. Molecular engineering based on GH families can obviously decrease the probing space of target sequences and structures, and increase the odds of experimental success. Besides, the study of cellulase active-site architecture paves the way toward the explanation of catalytic mechanism. This review focuses on the main GH families and the latest progresses in molecular engineering of catalytic domain. Based on the combination of analysis of a large amount of data in the same GH family and their conservative active-site architecture information, rational design will be an important direction for molecular engineering and promote the rapid development of the conversion of biomass.
Catalytic Domain
;
genetics
;
Cellulase
;
chemistry
;
genetics
;
Directed Molecular Evolution
;
methods
;
Evolution, Molecular
;
Glycoside Hydrolases
;
chemistry
;
genetics
;
Protein Engineering
;
methods

Result Analysis
Print
Save
E-mail