1.Join the club: ORP8 is a lipophagy receptor.
Protein & Cell 2023;14(9):632-634
3.Biological function of Nogo-B receptor.
Ying ZHU ; Li-Qun ZHANG ; Jian-Dong LI
Acta Physiologica Sinica 2022;74(2):301-308
Nogo-B receptor (NgBR) is a specific receptor of Nogo-B, a member of reticulon 4 protein family. It is widely expressed in many tissues and mainly located in cell membrane and endoplasmic reticulum. Previous studies have revealed that NgBR is involved in a variety of physiological and pathophysiological processes, such as dolichol synthesis, lipid metabolism, cholesterol trafficking, insulin resistance, vascular remodeling and angiogenesis, tumorigenesis and nervous system diseases. Further studies on the molecular characteristics and biological function of NgBR might be of great significance to understand its role in diverse diseases and provide possible clinical strategies for the treatment of diseases.
Carrier Proteins/metabolism*
;
Endoplasmic Reticulum/metabolism*
;
Lipid Metabolism
;
Nogo Proteins/metabolism*
;
Receptors, Cell Surface/metabolism*
4.Development of a BLI assay-based method for detecting LptA/LptC interaction.
Xiaowei DAI ; Xiaohong ZHU ; Shuyi SI ; Yan LI ; Lijie YUAN
Chinese Journal of Biotechnology 2021;37(9):3300-3309
In Gram-negative bacteria, lipopolysaccharide transport (Lpt) protein LptA and LptC form a complex to transport LPS from the inner membrane (IM) to the outer membrane (OM). Blocking the interaction between LptA and LptC will lead to the defect of OM and cell death. Therefore, Lpt protein interaction could be used as a target to screen new drugs for killing Gram-negative bacteria. Here we used biolayer interferometry (BLI) assay to detect the interaction between LptA and LptC, with the aim to develop a method for screening the LptA/LptC interaction blockers in vitro. Firstly, LptC and LptA with or without signal peptide (LptAfull or LptAno signal) were expressed in E. coli BL21(DE3). The purified proteins were then labeled with biotin and the super streptavidin (SSA) biosensor was blocked with diluent. The biotin labeled protein sample was mixed with the sensor, and then the binding of the protein with a series of diluted non biotinylated protein was detected. At the same time, non-biotinylated protein was used as a control. The binding of biotinylated protein to a small molecule IMB-881 and the blocking of interaction were also detected by the same method. In the blank control, the biosensor without biotinylated protein was used to detect the serially diluted samples. The signal response constant was calculated by using steady analysis. The results showed that biotinylated LptC had a good binding activity with LptAfull and LptAno signal with KD value 2.9e⁻⁷±7.9e⁻⁸ and 6.0e⁻⁷±2.8e⁻⁸, respectively; biotinylated LptAno signal had a good binding activity with LptC, with a KD value of 9.6e⁻⁷±7.2e⁻⁸. All binding curves showed obvious fast binding and fast dissociation morphology. The small molecule compound IMB-881 can bind to LptA to block the interaction between LptA and LptC, but has no binding activity with LptC. In summary, we developed a method for detecting the LptA/LptC interaction based on the BLI technology, and confirmed that this method can be used to evaluate the blocking activity of small molecule blockers, providing a new approach for the screening of LptA/LptC interaction blockers.
Carrier Proteins
;
Escherichia coli/metabolism*
;
Escherichia coli Proteins/metabolism*
;
Interferometry
;
Membrane Proteins/metabolism*
6.Important application of intestinal transporters and metabolism enzymes on gastrointestinal disposal of active ingredients of Chinese materia medica.
Xiaolin BI ; Qiu DU ; Liuqing DI
China Journal of Chinese Materia Medica 2010;35(3):397-400
Oral drug bioavailability depends on gastrointestinal absorption, intestinal transporters and metabolism enzymes are the important factors in drug gastrointestinal absorption and they can also be induced or inhibited by the active ingredients of Chinese materia medica. This article presents important application of intestinal transporters and metabolism enzymes on gastrointestinal disposal of the active ingredients of Chinese materia medica, and points out the importance of research on transport and metabolism of the active ingredients of Chinese materia medica in Chinese extract and Chinese medicinal formulae.
Animals
;
Carrier Proteins
;
metabolism
;
Gastrointestinal Tract
;
enzymology
;
metabolism
;
Humans
;
Intestines
;
metabolism
;
Materia Medica
;
metabolism
8.Dissecting the molecular mechanism of nuclear receptor action: transcription coactivators and corepressors.
Jae Woon LEE ; Jae Hun CHEONG ; Young Chul LEE ; Soon Young NA ; Soo Kyung LEE
Experimental & Molecular Medicine 2000;32(2):53-60
No abstract available.
Acetyltransferases/metabolism
;
Animal
;
Carrier Proteins/metabolism
;
DNA-Binding Proteins/metabolism
;
Human
;
Nuclear Proteins/metabolism
;
Receptors, Cytoplasmic and Nuclear/metabolism*
;
Repressor Proteins/metabolism*n
;
Trans-Activators/metabolism*
;
Transcription Factors/metabolism
9.PICK1 is associated with central nervous system diseases.
Journal of Zhejiang University. Medical sciences 2009;38(6):649-654
PICK1 (protein interacting with C kinase 1) contains a PDZ (PSD-95/Dlg/ZO1) domain and a BAR (Bin/amphiphysin/Rvs) domain. Via the PDZ domain, PICK1 interacts directly with more than 40 proteins. Among these interacting proteins, some are important for physiological and pathophysiological processes of central nervous system. In this review, recent findings about how PICK1 is associated with central nervous system diseases are summarize.
Animals
;
Carrier Proteins
;
chemistry
;
metabolism
;
physiology
;
Epilepsy
;
metabolism
;
Humans
;
Nuclear Proteins
;
chemistry
;
metabolism
;
physiology
;
Schizophrenia
;
metabolism
;
Stroke
;
metabolism
10.Location of GbpC protein in Streptococcus mutans UA159.
Ping HU ; Zhuan BIAN ; Ming-wen FAN ; Min NIE
Chinese Journal of Stomatology 2007;42(6):349-352
OBJECTIVETo determine whether the glucan binding protein C (GbpC) with LPXAG motif is anchoring to the cell wall of the Streptococcus mutans UA159 (S. mutans UA159).
METHODSS. mutans UA159 GbpC C terminal gene segment was amplified by PCR, the gene sequences and the deduced amino acid sequences were analyzed. In order to locate the GbpC of S. mutans, the study isolated the wall fraction following digestion of the cell wall by N-acetylmuramidase, and the GbpC was detected by Western blot analysis. GbpC S. mutans UA159 was located with gold particles. Furthermore, the dextran-dependent aggregation (ddag) phenotype of the S. mutans UA159 under stress condition was observed.
RESULTSS. mutans UA159 GbpC C-terminal LPXTG motif was replaced by LPXAG motif. GbpC was observed in the cell wall component and immunogold experiment showed that the gold particles distributed around the cell wall surface. S. mutans UA159 exhibited ddag+.
CONCLUSIONSGbpC with LPXAG motif was still anchoring to the cell wall.
Bacterial Proteins ; metabolism ; Carrier Proteins ; metabolism ; Cell Wall ; metabolism ; In Vitro Techniques ; Lectins ; metabolism ; Streptococcus mutans ; metabolism ; ultrastructure