2.PICK1 is associated with central nervous system diseases.
Journal of Zhejiang University. Medical sciences 2009;38(6):649-654
PICK1 (protein interacting with C kinase 1) contains a PDZ (PSD-95/Dlg/ZO1) domain and a BAR (Bin/amphiphysin/Rvs) domain. Via the PDZ domain, PICK1 interacts directly with more than 40 proteins. Among these interacting proteins, some are important for physiological and pathophysiological processes of central nervous system. In this review, recent findings about how PICK1 is associated with central nervous system diseases are summarize.
Animals
;
Carrier Proteins
;
chemistry
;
metabolism
;
physiology
;
Epilepsy
;
metabolism
;
Humans
;
Nuclear Proteins
;
chemistry
;
metabolism
;
physiology
;
Schizophrenia
;
metabolism
;
Stroke
;
metabolism
3.Research advance on placental iron transport proteins.
Jin-Ying ZHAO ; Ze-Zhi HUANG ; Yan-Wei LI
Chinese Journal of Contemporary Pediatrics 2009;11(6):510-513
Animals
;
Antimicrobial Cationic Peptides
;
physiology
;
Carrier Proteins
;
physiology
;
Cation Transport Proteins
;
physiology
;
Ceruloplasmin
;
physiology
;
Female
;
Ferritins
;
physiology
;
Hemochromatosis Protein
;
Hepcidins
;
Histocompatibility Antigens Class I
;
physiology
;
Humans
;
Iron
;
metabolism
;
Iron-Regulatory Proteins
;
physiology
;
Membrane Proteins
;
physiology
;
Placenta
;
metabolism
;
Pregnancy
;
Transferrin
;
physiology
4.Expression of leptin receptor (Ob-R) in human atherosclerotic lesions: potential role in intimal neovascularization.
Seok Min KANG ; Hyuck Moon KWON ; Bum Kee HONG ; Dongsoo KIM ; In Jai KIM ; Eui Young CHOI ; Yangsoo JANG ; Hyun Seung KIM ; Myung Sin KIM ; Hyuck Chan KWON
Yonsei Medical Journal 2000;41(1):68-75
Neovascularization of the adventitial vasa vasorum with extension into the intima of atherosclerotic lesions is frequently observed, but its pathophysiological significance is still subject to debate. Recently, leptin, the product of the Ob gene, was identified. Leptin, via activation of the endothelial receptor (Ob-R), generates a growth signal involving a tyrosine kinase-dependent intracellular pathway and promotes angiogenic processes. We hypothesized that a high concentration of leptin within vasa vasorum and plaque itself, may influence inflammatory and vascular neovascularization coupling with functional upregulation of the vascular endothelial growth factor (VEGF). Microscopic computerized tomography was utilized for the spatial distribution of vasa vasorum and intimal neovascularization from atherosclerotic human coronary arteries. Atherosclerotic coronary arteries showed a dense plexus of microvessels in the adventitia and plaque itself. Microscopic analysis from human atherosclerotic aortas revealed an increase in the intimal thickness with neovascularization. The immunoreactivity for Ob-R, VEGF and matrix metalloproteinase (MMP) increased in atherosclerotic plaque, predominantly in the endothelial lining of the intimal neovessel and macrophages/foam cells. Our observation of a prominent colocalization between Ob-R, VEGF and MMP supports this hypothesis and these factors participate in the neovascularization of atherosclerotic lesions. The present study is the first report on vascular tissue and it opens a promising perspective concerning future investigations of leptin-dependent modulation of atherogenesis and vascular neovascularization under pathophysiolgical conditions.
Adult
;
Arteriosclerosis/physiopathology
;
Arteriosclerosis/pathology
;
Arteriosclerosis/metabolism*
;
Blood Vessels/pathology
;
Blood Vessels/metabolism
;
Carrier Proteins/physiology
;
Carrier Proteins/metabolism*
;
Human
;
Middle Age
;
Neovascularization, Pathologic/physiopathology
5.Sepsis and membrane receptors.
Zhao-xia DUAN ; Pei-fang ZHU ; Jian-xin JIANG
Chinese Journal of Traumatology 2005;8(1):60-64
6.Inflammatory Bowel Diseases and Inflammasome.
The Korean Journal of Gastroenterology 2011;58(6):300-310
Inflammatory bowel disease (IBD), the most important entities being ulcerative colitis and Crohn's disease, are chronic, relapsing and remitting inflammatory conditions that result from chronic dysregulation of the mucosal immune system in the intestinal tract. Although the precise pathogenesis of IBD is still incompletely understood, increased levels of proinflammatory cytokines, including interleukin (IL)-1beta, IL-18 and tumor necrosis factor-alpha, are detected in active IBD and correlate with the severity of inflammation, indicating that these cytokines may play a key role in the development of IBD. Recently, the intracellular nucleotide-binding oligomerization domain-like receptor (NLR) family members, including NLRP1, NLRP3, NLRC4 and NLRP6, are emerging as important regulators of intestinal homeostasis. Together, one of those aforementioned molecules or the DNA sensor absent in melanoma 2 (AIM2), apoptosis-associated speck-like protein containing 'a caspase recruitment domain (CARD)' (ASC) and caspase-1 form a large (>700 kDa) multi-protein complex called the inflammasome. Stimulation with specific microbial and endogenous molecules triggers inflammasome assembly and caspase-1 activation. Activated caspase-1 leads to the secretion of proinflammatory cytokines, including IL-1beta and IL-18, and the promotion of pyroptosis, a form of phagocyte cell death induced by bacterial pathogens, in an inflamed tissue. Therefore, inflammasomes are assumed to mediate host defense against microbial pathogens and gut homeostasis, so that their dysregulation might contribute to IBD pathogenesis. This review focuses on recent advances of the role of NLRP3 inflammasome signaling in IBD pathogenesis. Improving knowledge of the inflammasome could provide insights into potential therapeutic targets for patients with IBD.
CARD Signaling Adaptor Proteins/metabolism
;
Carrier Proteins/metabolism/physiology
;
Caspase 1/metabolism
;
Humans
;
Inflammasomes/*metabolism
;
Inflammatory Bowel Diseases/metabolism/*pathology
;
Interleukin-18/metabolism
;
Interleukin-1beta/metabolism
;
Signal Transduction
7.What we know about ST13, a co-factor of heat shock protein, or a tumor suppressor?
Zheng-zheng SHI ; Jia-wei ZHANG ; Shu ZHENG
Journal of Zhejiang University. Science. B 2007;8(3):170-176
This article is to summarize the molecular and functional analysis of the gene "suppression of tumorigenicity 13" (ST13). ST13 is in fact the gene encoding Hsp70 interacting protein (Hip), a co-factor (co-chaperone) of the 70-kDa heat shock proteins (Hsc/Hsp70). By collaborating with other positive co-factors such as Hsp40 and the Hsp70-Hsp90 organizing protein (Hop), or competing with negative co-factors such as Bcl2-associated athanogen 1 (Bag1), Hip facilitates may facilitate the chaperone function of Hsc/Hsp70 in protein folding and repair, and in controlling the activity of regulatory proteins such as steroid receptors and regulators of proliferation or apoptosis. Although the nomenclature of ST13 implies a role in the suppression of tumorigenicity (ST), to date available experimental data are not sufficient to support its role in cancer development, except for the possible down-regulation of ST13 in gastric and colorectal cancers. Further investigation of this gene at the physiological level would benefit our understanding of diseases such as endocrinological disorders, cancer, and neurodegeneration commonly associated with protein misfolding.
Adenosine Triphosphate
;
metabolism
;
Animals
;
Carrier Proteins
;
chemistry
;
genetics
;
physiology
;
Cloning, Molecular
;
HSP70 Heat-Shock Proteins
;
metabolism
;
Humans
;
Protein Folding
;
Tumor Suppressor Proteins
;
chemistry
;
genetics
;
physiology
8.Lipid rafts are important for the association of RANK and TRAF6.
Hyunil HA ; Han Bok KWAK ; Soo Woong LE ; Hong Hee KIM ; Zang Hee LEE
Experimental & Molecular Medicine 2003;35(4):279-284
Rafts, cholesterol- and sphingolipid-rich membrane microdomains, have been shown to play an important role in immune cell activation. More recently rafts were implicated in the signal transduction by members of the TNF receptor (TNFR) family. In this study, we provide evidences that the raft microdomain has a crucial role in RANK (receptor activator of NF-kappaB) signaling. We found that the majority of the ectopically expressed RANK and substantial portion of endogenous TRAF2 and TRAF6 were detected in the low-density raft fractions. In addition, TRAF6 association with rafts was increased by RANKL stimulation. The disruption of rafts blocked the TRAF6 translocation by RANK ligand and impeded the interaction between RANK and TRAF6. Our observations demonstrate that proper RANK signaling requires the function of raft membrane microdomains.
Carrier Proteins/metabolism
;
Glycoproteins/*metabolism
;
Human
;
Membrane Glycoproteins/metabolism
;
Membrane Microdomains/*metabolism
;
Protein Transport/physiology
;
Proteins/*metabolism
;
Receptors, Cytoplasmic and Nuclear/*metabolism
9.Receptors for Treponema pallidum Attachment to the Surface and Matrix Proteins of Cultured Human Dermal Microvascular Endothelial Cells.
Ju Hee LEE ; Hyun Joo CHOI ; Jeanne JUNG ; Min Geol LEE ; Jung Bock LEE ; Kwang Hoon LEE
Yonsei Medical Journal 2003;44(3):371-378
Pathogenicity of Treponema pallidum may depend upon the binding of Treponema pallidum to matrix proteins, especially to fibronectin. Infectious organism or cell to matrix interactions are mediated by a family of adhesion molecule receptors known as integrins. Once in the host, the pathogenic Treponema pallidumdum adheres to the vascular endothelium and readily penetrates surrounding tissues. Fibronectin plays an important role in the mediation of the attachment of Treponema pallidum to host cells, including endothelial cells. We found that the binding of Treponema pallidum to human dermal microvascular endothelial cells and to a glass surface coated with fibronectin is inhibited by the presence of arginine-glycine- aspartic acid (RGD), and analysis of the surface receptor revealed an antigenic similarity to an integrin molecule, namely alpha5. This ability to adhere to host endothelium and fibronectin is quite unique to T. pallidum among the treponemes, and may be a key pathogenic factor.
Carrier Proteins/*physiology
;
Cell Membrane/metabolism
;
Cells, Cultured
;
Endothelium, Vascular/cytology/*metabolism
;
Extracellular Matrix Proteins/*metabolism
;
Human
;
Microcirculation
;
Skin/*blood supply
;
Support, Non-U.S. Gov't
;
Treponema pallidum/*physiology
10.Advances in the study of regulation of novel organic cation transporter-2.
Acta Pharmaceutica Sinica 2009;44(10):1061-1065
Novel organic cation transporter-2 (OCTN2), a member of the organic cation transporter family, may transport carnitine and multiple organic cationic drugs. Thus OCTN2 possesses substantial roles in physiology and pharmacology. A number of researches have proven that many factors can regulate the expression and/or function of OCTN2 via different pathways, and then may affect the homeostasis and disposition of drugs. This paper reviews recent progresses in this field.
Animals
;
Biological Transport
;
Carnitine
;
metabolism
;
Carrier Proteins
;
physiology
;
Clofibrate
;
pharmacology
;
Colitis
;
metabolism
;
Homeostasis
;
drug effects
;
Humans
;
Mutation
;
Organic Cation Transport Proteins
;
genetics
;
metabolism
;
physiology
;
PPAR alpha
;
agonists
;
RNA, Messenger
;
metabolism
;
Solute Carrier Family 22 Member 5