4.A case report of laminopathy-cardiomyopathy.
Chinese Journal of Cardiology 2022;50(10):1023-1026
5.A novel target for the regulation of cardiac arrhythmias--microRNAs.
Ben-Zhi CAI ; Yan-Jie LÜ ; Bao-Feng YANG
Acta Pharmaceutica Sinica 2009;44(8):833-837
microRNAs are one kind of endogenous no-encoding RNA with about 22 nucleotides in length, and inhibited the translation of mRNAs by partially complementary binding to the 3' UTR of target mRNAs in the post-transcriptional level. Recent research shows that miRNAs function in the physiological and pathological processes of heart, especially involved in the occurrence and progress of arrhythmias. Abnormal miRNAs alters the protein expression of ion channels, causes the cardiac dysfunction, and triggers heart arrhythmias. The article summarized recent advances about roles of miRNA in arrhythmias and related cardiomyopathy, and discussed the therapeutic potential of miRNAs for heart diseases.
Arrhythmias, Cardiac
;
genetics
;
metabolism
;
Cardiomyopathies
;
genetics
;
metabolism
;
Humans
;
MicroRNAs
;
genetics
;
metabolism
7.Desmoplakin and clinical manifestations of desmoplakin cardiomyopathy.
Zhong-Yu YUAN ; Li-Ting CHENG ; Ze-Feng WANG ; Yong-Quan WU
Chinese Medical Journal 2021;134(15):1771-1779
Desmoplakin (DSP), encoded by the DSP gene, is the main desmosome component and is abundant in the myocardial tissue. There are three DSP isoforms that assume the role of supporting structural stability through intercellular adhesion. It has been found that DSP regulates the transcription of adipogenic and fibrogenic genes, and maintains appropriate electrical conductivity by regulating gap junctions and ion channels. DSP is essential for normal myocardial development and the maintenance of its structural functions. Studies have suggested that DSP gene mutations are associated with a variety of hereditary cardiomyopathy, such as arrhythmia cardiomyopathy, dilated cardiomyopathy (DCM), left ventricular noncompaction, and is also closely associated with the Carvajal syndrome, Naxos disease, and erythro-keratodermia-cardiomyopathy syndrome with skin and heart damage. The structure and function of DSP, as well as the clinical manifestations of DSP-related cardiomyopathy were reviewed in this article.
Arrhythmogenic Right Ventricular Dysplasia
;
Cardiomyopathies/genetics*
;
Desmoplakins/genetics*
;
Hair Diseases
;
Humans
;
Keratoderma, Palmoplantar
9.Study on network pharmacological mechanism of "treating different diseases with same method" of Notoginseng Radix et Rhizoma in treating diabetic nephropathy, diabetic encephalopathy and diabetic cardiomyopathy.
Chang-Pei XIANG ; Rui ZHOU ; Jing-Jing ZHANG ; Hong-Jun YANG
China Journal of Chinese Materia Medica 2021;46(10):2424-2433
Pharmacology network was used to investigate the common key target and signaling pathway of Notoginseng Radix et Rhizoma in the protection against diabetic nephropathy(DN), diabetic encephalopathy(DE) and diabetic cardiomyopathy(DCM). The chemical components of Notoginseng Radix et Rhizoma were obtained through TCMSP database and literature mining, and SwissTargetPrediction database was used to predict potential targets of Notoginseng Radix et Rhizoma. The disease targets of DN, DE and DCM were obtained through OMIM and GeneCards databases. The overlapped targets of component targets and disease targets of DN, DE and DCM were obtained, and the network of "chemical component-target-disease" was established. The enriched GO and KEGG of the overlapped genes were investigated by using ClueGo plug-in with Cytoscape. At the same time, the PPI network was constructed through STRING database, and the common key targets for the treatment of three diseases by Notoginseng Radix et Rhizoma were obtained through topological parametric mathematical analysis by Cytoscape. A total of 166 chemical components and 835 component targets were screened out from Notoginseng Radix et Rhizoma. Briefly, 216, 194 and 230 disease targets of DN, DE and DCM were collected, respectively. And 54, 45 and 57 overlapped targets were identified when overlapping these disease targets with component targets of Notoginseng Radix et Rhizoma, respectively. Enrichment analysis indicated that the AGE-RAGE signaling pathway and FoxO signaling pathway were the common pathways in the protection of Notoginseng Radix et Rhizoma against DN, DE and DCM. Network analysis of the overlapped targets showed that TNF, STAT3, IL6, VEGFA, MAPK8, CASP3 and SIRT1 were identified as key targets of Notoginseng Radix et Rhizoma against DN, DE and DCM, the selected key targets were verified by literature review, and it was found that TNF, IL6, VEGFA, CASP3 and SIRT1 had been reported in the literature. In addition, there were the most compounds corresponding to the commom core target STAT3, indicating that more compounds in Notoginseng Radix et Rhizoma could regulate STAT3. This study indicated that Notoginseng Radix et Rhizoma potentially protected against DN, DE and DCM through regulating AGE-RAGE signaling pathway and FoxO signaling pathway and 7 common targets including TNF, STAT3, IL6, VEGFA, MAPK8, CASP3 and SIRT1. This study provided a reference for the research of "different diseases with same treatment" and also elucidated the potential mechanism of Notoginseng Radix et Rhizoma against DN, DE and DCM.
Brain Diseases
;
Diabetes Mellitus
;
Diabetic Cardiomyopathies/genetics*
;
Diabetic Nephropathies/genetics*
;
Humans
;
Research Design
;
Signal Transduction
10.Biochemical and genetic characteristics of 40 neonates with carnitine deficiency.
Xiaoqiang ZHOU ; Yanling TENG ; Siyuan LIN-PENG ; Zhuo LI ; Lingqian WU ; Desheng LIANG
Journal of Central South University(Medical Sciences) 2020;45(10):1164-1171
OBJECTIVES:
Primary carnitine deficiency (PCD) is a rare fatty acid metabolism disorder that can cause neonatal death. This study aims to analyze carnitine levels and detect SLC22A5 gene in newborns with carnitine deficiency, to provide a basis for early diagnosis of PCD, and to explore the relationship between carnitine in blood and SLC22A5 genotype.
METHODS:
A total of 40 neonates with low free carnitine (C0<10 μmol/L) in blood were the subjects of the study. SLC22A5 gene was detected by Sanger sequencing to analyze the value of carnitine, the results of gene test and their relationship.
RESULTS:
A total of 15 variants of SLC22A5 gene were detected, including 11 pathogenic or likely pathogenic variants and 4 variants of uncertain significance. There were 5 new mutations: c.288delG (p.G96fsX33), c.744_745insTCG (p.M258_L259insS), c.752A>G (p.Y251C), c.495 C>A (p.R165E), and c.1298T>C (p.M433T). We found 14 PCD patients including 2 homozygous mutations and 12 heterozygous mutations, 14 with 1 mutation, and 12 with no mutation among 40 children. The C0 concentration of children with SLC22A5 gene homozygous or complex heterozygous mutations was (4.95±1.62) μmol/L in the initial screening, and (3.90±1.33) μmol/L in the second screening. The C0 concentration of children with no mutation was (7.04±2.05) μmol/L in the initial screening, and (8.02±2.87) μmol/L in the second screening. There were significant differences between children with homozygous or compound heterozygous mutations and with no mutation in C0 concentration of the initial and the second screening (both
CONCLUSIONS
There are 5 new mutations which enriched the mutation spectrum of SLC22A5 gene. C0<5 μmol/L is highly correlated with SLC22A5 gene homozygous or compound heterozygous mutations. Children with truncated mutation may have lower C0 concentration than that with untruncated mutation in the initial screening.
Cardiomyopathies
;
Carnitine/deficiency*
;
Child
;
Humans
;
Hyperammonemia/genetics*
;
Infant, Newborn
;
Muscular Diseases/genetics*
;
Mutation
;
Solute Carrier Family 22 Member 5/genetics*