1.Anticancer effect of total annonaceous acetogenins on hepatocarcinoma.
Run-mei YANG ; Wen-min LI ; Wei-jun HU ; Wen-hua HUANG ; Chun-yan ZHU ; Jing-guang YU ; Xin ZHAO ; Da-yong CAI ; Nan-nan GAO
Chinese journal of integrative medicine 2015;21(9):682-688
OBJECTIVETo confirm the anticancer effect of total annonaceous acetogenins (TAAs) abstracted from Annona squamosa Linn. on human hepatocarcinoma.
METHODSThe inhibitory effect of TAAs was demonstrated in H22-bearing mice. The potency of TAAs was confirmed as its 50% inhibiting concentration (IC50) on Bel-7402 cell under Sulfur Rhodamine B staining. Both underlying mechanisms were explored as cellular apoptosis and cell cycle under flow cytometry. Mitochondrial and recipient apoptotic pathways were differentiated as mitochondrial membrane potential under flow cytometry and caspases activities under fluorescence analysis.
RESULTSThe inhibitory rate of TAAs in mice was 50.98% at 4 mg/kg dose. The IC50 of TAAs on Bel-7402 was 20.06 µg/mL (15.13-26.61µg/mL). Effective mechanisms of TAAs were confirmed as both of arresting cell cycle at G1 phase and inducing apoptosis dose- and time-dependently. Mitochondrial and recipient pathways involved in apoptotic actions of TAAs.
CONCLUSIONTAAs is effective for hepatocarcinoma, via inhibiting proliferation and inducing apoptosis.
Acetogenins ; chemistry ; pharmacology ; therapeutic use ; Animals ; Annona ; chemistry ; Antineoplastic Agents, Phytogenic ; chemistry ; pharmacology ; therapeutic use ; Apoptosis ; drug effects ; Carcinoma, Hepatocellular ; drug therapy ; enzymology ; pathology ; Caspases ; metabolism ; Cell Cycle ; drug effects ; Cell Line, Tumor ; Cell Proliferation ; drug effects ; Chromatography, High Pressure Liquid ; Dose-Response Relationship, Drug ; Humans ; Liver Neoplasms ; drug therapy ; enzymology ; pathology ; Male ; Membrane Potential, Mitochondrial ; drug effects ; Mice ; Organ Specificity ; drug effects ; Spleen ; drug effects ; Thymus Gland ; drug effects ; Xenograft Model Antitumor Assays
2.A novel prognostic factor for hepatocellular carcinoma: protein disulfide isomerase.
Su Jong YU ; Jae Kyung WON ; Han Suk RYU ; Won Mook CHOI ; Hyeki CHO ; Eun Ju CHO ; Jeong Hoon LEE ; Yoon Jun KIM ; Kyung Suk SUH ; Ja June JANG ; Chung Yong KIM ; Hyo Suk LEE ; Jung Hwan YOON ; Kwang Hyun CHO
The Korean Journal of Internal Medicine 2014;29(5):580-587
BACKGROUND/AIMS: Protein disulfide isomerase (PDI) has been implicated in the survival and progression of some cancer cells, by compensating for endoplasmic reticulum stress by upregulating the protein-folding capacity. However, its prognostic role in patients with hepatocellular carcinoma (HCC) has not been investigated. METHODS: We collected HCC tissues from 83 HCC patients who underwent surgical resection for an immunohistochemical study of PDI. Overall survival (OS) was measured from the date of surgical resection until the date of death from any cause. Radiological progression was evaluated using the modified Response Evaluation Criteria in Solid Tumors in an independent radiological assessment. RESULTS: PDI expression was found to be increased in human HCC compared to adjacent nontumor tissues. Increased immunopositivity for PDI was associated with a high Edmondson-Steiner grade (p = 0.028). Univariate analysis of patients who had undergone surgical resection for HCC showed that tumor PDI upregulation is a significant risk factor for poor OS (p = 0.016; hazard ratio [HR], 1.980) and time to progression (TTP; p = 0.007; HR, 1.971). Multivariate analyses revealed that high PDI expression was an independent predictor of a shorter TTP (p = 0.015; HR, 1.865) and poor OS (p = 0.012; HR, 2.069). CONCLUSIONS: Upregulated PDI expression is associated with aggressive clinicopathological features of HCC; thus, PDI might serve as an independent prognostic factor and a potential therapeutic target for HCC patients.
Carcinoma, Hepatocellular/*enzymology/pathology
;
Female
;
Humans
;
Kaplan-Meier Estimate
;
Liver Neoplasms/*enzymology/pathology
;
Male
;
Middle Aged
;
Prognosis
;
Protein Disulfide-Isomerases/*metabolism
;
Retrospective Studies
;
Tumor Markers, Biological/metabolism
3.Newer treatments for advanced hepatocellular carcinoma.
The Korean Journal of Internal Medicine 2014;29(2):149-155
Hepatocellular carcinoma (HCC) is one of the most common cancers worldwide. The only curative treatment modalities for HCC are surgery, percutaneous ablation, and liver transplantation. Unfortunately, the majority of patients have unresectable disease at diagnosis. Therefore, effective treatment options are needed for patients with advanced HCC. The current standard treatment for patients with advanced HCC, according to the Barcelona Clinic Liver Cancer staging system, is the multikinase inhibitor sorafenib. Other alternative therapies are required, due to the limited treatment response to, and tolerance of, this molecular target agent. Clinical trials of hepatic artery infusion chemotherapy, radioembolization, and multimodal treatments have shown favorable results in advanced HCC patients. This article introduces new treatment modalities for advanced HCC and discusses future therapeutic possibilities.
Antineoplastic Agents/administration & dosage/*therapeutic use
;
Carcinoma, Hepatocellular/enzymology/pathology/*therapy
;
Combined Modality Therapy
;
Embolization, Therapeutic/*methods
;
Hepatic Artery
;
Humans
;
Infusions, Intra-Arterial
;
Liver Neoplasms/enzymology/pathology/*therapy
;
Molecular Targeted Therapy
;
Niacinamide/analogs & derivatives/therapeutic use
;
Phenylurea Compounds/therapeutic use
;
Protein Kinase Inhibitors/therapeutic use
;
Radiopharmaceuticals/therapeutic use
;
Signal Transduction/drug effects
;
Treatment Outcome
5.Role of arginase-1 expression in distinguishing hepatocellular carcinoma from non-hepatocellular tumors.
Wei SANG ; Abulajiang GULINAR ; Cheng-hui WANG ; Wei-qi SHENG ; Ymijiang MAIWEILIDAN ; Wei ZHANG
Chinese Journal of Pathology 2013;42(8):538-542
OBJECTIVETo study the role of arginase-1 (Arg-1) expression in differential diagnosis of hepatocellular carcinoma (HCC), Arg-1 staining pattern in clear cell neoplasm (HCC and non-HCC) and Arg-1 expression in non-hepatocellular tumors.
METHODSSeventy-eight cases of HCC (including 8 cases of clear cell type and 70 cases of non- clear cell type) and 246 cases of non-hepatocellular neoplasms (including 29 cases of metastatic tumors such as breast cancer, nasopharyngeal carcinoma and neuroendocrine carcinoma, 77 cases of tumors with clear cell changes such as malignant melanoma, clear cell renal cell carcinoma and alveolar soft part sarcoma, and 140 cases of other types of tumors such as ovarian endometrioid adenocarcinoma, pituitary tumor and thyroid papillary carcinoma) were studied.Immunohistochemical study for Arg-1 was performed on the paraffin-embedded tumor tissue.
RESULTSIn HCC, Arg-1 demonstrated both cytoplasmic and nuclear staining, with an overall sensitivity of 96.2% (75/78).In well, moderately and poorly differentiated HCC, the sensitivity was 15/15, 100% (41/41) and 86.4% (19/22), respectively. That was in contrast to negative staining for Arg-1 in all the 29 cases of metastatic tumors studied. The sensitivity, specificity, positive predictive value and negative predictive value of Arg-1 in distinguishing HCC from metastatic tumors was 96.2%, 100%, 100% and 90.6%, respectively. Cytoplasmic and membranous staining was observed in clear cell type of HCC. The overall sensitivity of Arg-1 expression in the 77 cases of tumors with clear cell changes was 14.3% (11/77), including 8/15 for malignant melanoma, 2/4 for ovarian clear cell carcinoma and 1/1 gall bladder adenocarcinoma with clear cell component.In malignant melanoma and ovarian clear cell carcinoma, only cytoplasmic staining was demonstrated. There was no expression of Arg-1 in the 140 cases of other tumor types studied.
CONCLUSIONSArg-1 is a sensitive and specific marker for HCC.It is a potentially useful immunohistochemical marker in distinguishing HCC from metastatic tumors. Though also expressed in malignant melanoma and ovarian clear cell carcinoma, Arg-1 shows a different staining pattern as compared with that in HCC.
Adenocarcinoma ; enzymology ; Adult ; Aged ; Arginase ; metabolism ; Carcinoma, Hepatocellular ; enzymology ; pathology ; secondary ; Cell Differentiation ; Diagnosis, Differential ; Female ; Gallbladder Neoplasms ; enzymology ; Humans ; Liver Neoplasms ; enzymology ; pathology ; secondary ; Male ; Melanoma ; enzymology ; Middle Aged ; Ovarian Neoplasms ; enzymology ; Stomach Neoplasms ; enzymology ; pathology
6.Induction of apoptosis in human Hep3B hepatoma cells by norcantharidin through a p53 independent pathway via TRAIL/DR5 signal transduction.
Chung-Hsin YEH ; Yu-Yen YANG ; Ya-Fang HUANG ; Kuan-Chih CHOW ; Ming-Feng CHEN
Chinese journal of integrative medicine 2012;18(9):676-682
OBJECTIVETo investigate the inhibitory activities of norcantharidin (NCTD), a demethylated analogue of cantharidin, on Hep3B cells (a human hepatoma cell line) with deficiency of p53.
METHODSThe survival rate of the Hep3B cells after treating with NCTD was measured by MTT assay. Cell cycle of treated cells was analyzed by flow cytometry, and DNA fragmentation was observed by electrophoresis. The influence of inhibitors for various caspases and anti-death receptors antibodies on the NCTD-induced apoptosis in the cells was determined.
RESULTSNCTD treatment resulted in growth inhibition of Hep3B cells in a dose- and time-dependent manner. Cell cycle analysis of the cells after treatment with NCTD for 48 h shows that NCTD induced G(2)M phase arrest occurs at low concentration ([Symbol: see text] 25 μmol/L) but G(0)G(1) phase arrest at high concentration (50 μmol/L). The addition of both caspase-3 and caspase-10 inhibitors completely inhibited DNA fragmentation. Addition of anti-TRAIL/DR5 antibody significantly inhibited DNA fragmentation.
CONCLUSIONNCTD may inhibit the proliferation of Hep3B cells by arresting cell cycle at G(2)M or G(0)G(1) phase, and induce cells apoptosis via TRAIL/DR5 signal transduction through activation of caspase-3 and caspase-10 by a p53-independent pathway.
Antibodies, Neoplasm ; pharmacology ; Antibodies, Neutralizing ; pharmacology ; Apoptosis ; drug effects ; Bridged Bicyclo Compounds, Heterocyclic ; pharmacology ; Carcinoma, Hepatocellular ; enzymology ; pathology ; Caspase 10 ; metabolism ; Caspase 3 ; metabolism ; Caspase Inhibitors ; pharmacology ; Cell Cycle Checkpoints ; drug effects ; Cell Line, Tumor ; Cell Proliferation ; drug effects ; DNA Fragmentation ; drug effects ; Humans ; Immunohistochemistry ; Liver Neoplasms ; enzymology ; pathology ; Receptors, TNF-Related Apoptosis-Inducing Ligand ; metabolism ; Signal Transduction ; drug effects ; TNF-Related Apoptosis-Inducing Ligand ; metabolism ; Tumor Suppressor Protein p53 ; metabolism
7.Pro-oncogenic potential of NM23-H2 in hepatocellular carcinoma.
Mi Jin LEE ; Dong Yuan XU ; Hua LI ; Goung Ran YU ; Sun Hee LEEM ; In Sun CHU ; In Hee KIM ; Dae Ghon KIM
Experimental & Molecular Medicine 2012;44(3):214-224
NM23 is a family of structurally and functionally conserved proteins known as nucleoside diphosphate kinases (NDPK). There is abundant mRNA expression of NM23-H1, NM23-H2, or a read through transcript (NM23-LV) in the primary sites of hepatocellular carcinoma (HCC). Although the NM23-H1 protein is implicated as a metastasis suppressor, the role of NM23-H2 appears to be less understood. Thus, the aim of this study was to examine whether NM23-H2 is associated with hepatocarcinogenesis. The level of NM23-H2 expression in tumor tissues and the surrounding matrix appeared to be independent of etiology and tumor differentiation. Its subcellular localization was confined to mainly the cytoplasm and to a lesser extent in the nucleus. Ectopic expression of NM23-H2 in NIH3T3 fibroblasts and HLK3 hepatocytes showed a transformed morphology, enhanced focus formation, and allowed anchorage-independent growth. Finally, NIH3T3 fibroblasts and HLK3 hepatocytes stably expressing NM23-H2 produced tumors in athymic mice and showed c-Myc over-expression. In addition, NF-kappaB and cyclin D1 expression were also increased by NM23-H2. Lentiviral delivery of NM23-H2 shRNA inhibited tumor growth of xenotransplanted tumors produced from HLK3 cells stably expressing NM23-H2. Collectively, these results indicate that NM23-H2 may be pro-oncogenic in hepatocarcinogenesis.
Animals
;
Carcinoma, Hepatocellular/*enzymology/genetics/pathology
;
Cell Line
;
Cell Line, Tumor
;
*Gene Expression Regulation, Neoplastic
;
Humans
;
Liver/*enzymology/metabolism/pathology
;
Liver Neoplasms/*enzymology/genetics/pathology
;
Mice
;
Mice, Nude
;
NIH 3T3 Cells
;
NM23 Nucleoside Diphosphate Kinases/*genetics/metabolism
8.Down-regulation of Ech1 decreases the adhesion ability of mouse hepatocarcinoma Hca-F cells.
Jun ZHANG ; Jian-wu TANG ; Ming-zhong SUN ; Shu-qing LIU ; Mei-ying SONG ; Bo WANG ; Bo SONG ; Yu-hong HUANG
Chinese Journal of Hepatology 2012;20(8):605-610
To examine the differential expression pattern of Ech1 protein in mouse Hca-F and Hca-P hepatocarcinoma cell lines with high and low rates of lymphatic metastasis, respectively, and to investigate the relationships between Ech1 expression and adhesion of Hca-F cells. Fluorescence two-dimensional difference in-gel electrophoresis (2D DIGE) and mass spectrometry were used to detect Ech1 expression. Ech1 gene silencing was achieved by stable transfection of Hca-F cells with a plasmid vector harboring short hairpin RNA (shRNA) targeting Ech1, pGPU6/GFP/Neo-shRNA-Ech1. Ech1 mRNA and protein expressions were detected by real-time quantitative polymerase chain reaction (qRT-PCR) and Western blotting analysis, respectively. Adhesive properties of cells were assessed by hematoxylin-eosin staining and fluorimetric detection of extracellular matrix (ECM) proteins. Endogenous Ech1 protein level was remarkably higher in the highly metastatic Hca-F cell line than in the Hca-P cell line (2.7-fold by 2D DIGE; 1.5-fold by Western blotting). shRNA-induced silencing of Ech1 significantly reduced the adhesion ability of Hca-F cells, as evidenced by decreased absorbance values of fibronectin and collagen I (Hca-F cells vs. pGPU6/GFP/Neo-shRNA-Ech1 cells: 1.42+/-0.26 vs. 1.01+/-0.27 and 1.14+/-0.07 vs. 0.90+/-0.09, respectively; P less than 0.05). Down-regulation of Ech1 can inhibit the adhesive capacity of metastatic Hca-F cells.
Animals
;
Carbon-Carbon Double Bond Isomerases
;
genetics
;
metabolism
;
Carcinoma, Hepatocellular
;
enzymology
;
genetics
;
pathology
;
Cell Adhesion
;
Cell Line, Tumor
;
Down-Regulation
;
Electrophoresis, Gel, Two-Dimensional
;
Gene Expression Regulation, Neoplastic
;
Liver Neoplasms
;
enzymology
;
genetics
;
pathology
;
Lymph Nodes
;
pathology
;
Lymphatic Metastasis
;
Mice
;
Plasmids
;
RNA, Messenger
;
genetics
;
metabolism
;
RNA, Small Interfering
;
genetics
;
pharmacology
;
Transfection
9.Effects of Benzo(a)pyrene on the Expression of Heat Shock Proteins, Pro-inflammatory Cytokines and Antioxidant Enzymes in Hepatic Tumors Induced by Rat Hepatoma N1-S1 Cells.
Zhi ZHENG ; So Young PARK ; Min LEE ; Sohee PHARK ; Nam Hee WON ; Hyung Sik KANG ; Donggeun SUL
Journal of Korean Medical Science 2011;26(2):222-230
Benzo(a)pyrene (BaP) is a polycyclic aromatic hydrocarbon (PAH) that is easily introduced to humans via consumption of grilled or smoked meat. BaP causes harmful oxidative effects on cell development, growth and survival through an increase in membrane lipid peroxidation, oxidative DNA damage and mutagenesis. Therefore, the present study was conducted to evaluate the synergistic effects of BaP on oxidative stress in hepatic tumors. In this study, we established a hepatic tumor model by injecting rat hepatoma N1-S1 cells into healthy rats. Changes in the abundance of heat shock proteins (HSPs), antioxidant enzymes and pro-inflammatory cytokines were then investigated by western blot analysis. In addition, we examined changes in oxidative stress levels. Injection of N1-S1 cells or concomitant injection of BaP and N1-S1 cells resulted in the formation of hepatic tumors at the injection site. Evaluation of rat plasma reveals that hepatic tumors induced by BaP and N1-S1 cells expresses higher levels of Hsp27, superoxide dismutase (SOD), and tumor necrosis factor-alpha (TNF-alpha) when compared to those induced by N1-S1 cells only. The collective results of this study suggest that BaP exerts synergistic effects on the expression of HSP, cytokines and antioxidant enzymes in hepatic tumors induced by rat hepatoma N1-S1 cells.
Animals
;
Antioxidants/*metabolism
;
Benzo(a)pyrene/*pharmacology
;
Carcinoma, Hepatocellular/metabolism/pathology
;
Cell Line, Tumor/*drug effects
;
Cytokines/*metabolism
;
Heat-Shock Proteins/*metabolism
;
Humans
;
Liver Neoplasms/*enzymology/*metabolism/pathology
;
Male
;
Neoplasms, Experimental/metabolism/pathology
;
Oxidative Stress/drug effects
;
Rats
;
Rats, Sprague-Dawley
10.Suppression of hepatic tumor growth and metastasis by metronomic therapy in a rat model of hepatocellular carcinoma.
Jeong Won JANG ; Seong Tae PARK ; Jung Hyun KWON ; Chan Ran YOU ; Jong Young CHOI ; Chan Kwon JUNG ; Si Hyun BAE ; Seung Kew YOON
Experimental & Molecular Medicine 2011;43(5):305-312
Although continuous low-dose (metronomic [MET]) therapy exerts anti-cancer efficacy in various cancer models, the effect of long-term MET therapy for hepatocellular carcinoma (HCC) remains unknown. This study assessed the long-term efficacy of MET on suppression of tumor growth and spontaneous metastasis in a rat model of HCC induced by administration of diethylnitrosamine for 16 wk. The rats were divided into 3 groups: MTD group received intraperitoneal (i.p.) injections of 40 mg/kg cyclophosphamide on days 1, 3, and 5 of a 21-day cycle; Control and MET groups received i.p. injections of saline and 20 mg/kg cyclophosphamide twice a week, respectively. Anti-tumor and anti-angiogenic effects and anti-metastatic mechanisms including matrix metalloproteinases (MMPs) and tissue inhibitors of MMPs (TIMPs) were evaluated. Twelve wk of MET therapy resulted in a significant reduction in intrahepatic tumors than control or MTD therapy. The MET group had fewer proliferating cell nuclear antigen-positive cells and decreased hypoxia-inducible factor-1alpha levels and microvessel density. Lung metastases were detected in 100%, 80%, and 42.9% in the control, MTD, and MET groups, respectively. MET therapy significantly decreased expression of TIMP-1, MMP-2 and -9. For mediators of pro-MMP-2 activation, MET therapy induced significant suppression in the TIMP-2 and MMP-14 level. The survival in the MET group was significantly prolonged compared to the control and MTD groups. Long-term MET scheduling suppresses tumor growth and metastasis via its potent anti-angiogenic properties and a decrease in MMPs and TIMPs activities. These results provide a rationale for long-term MET dosing in future clinical trials of HCC treatment.
Animals
;
Antineoplastic Agents/*administration & dosage/*pharmacology
;
Carcinoma, Hepatocellular/chemically induced/*drug therapy/mortality/pathology
;
Cell Proliferation/drug effects
;
Cyclophosphamide/*administration & dosage/*pharmacology
;
Diethylnitrosamine
;
Disease Models, Animal
;
Gene Expression Regulation, Neoplastic/*drug effects
;
Liver Cirrhosis/chemically induced
;
Liver Neoplasms/chemically induced/*drug therapy/mortality/pathology
;
Lung Neoplasms/drug therapy/pathology/secondary
;
Male
;
Matrix Metalloproteinases/metabolism
;
Neovascularization, Pathologic/enzymology/physiopathology
;
Rats
;
Rats, Sprague-Dawley
;
Survival Analysis
;
Tissue Inhibitor of Metalloproteinases/metabolism
;
Tumor Burden/drug effects

Result Analysis
Print
Save
E-mail