1.Comparable bone healing capacity of different bone graft matrices in a rabbit segmental defect model.
Jong Min KIM ; Myoung Hwan KIM ; Seong Soo KANG ; Gonhyung KIM ; Seok Hwa CHOI
Journal of Veterinary Science 2014;15(2):289-295
We compared the bone healing capacity of three different demineralized bone matrix (DBM) products applied using different carrier molecules (hyaluronic acid [HA] vs. carboxymethylcellulose [CMC]) or bone compositions (cortical bone vs. cortical bone and cancellous bone) in a rabbit segmental defect model. Overall, 15-mm segmental defects in the left and right radiuses were created in 36 New Zealand White rabbits and filled with HA-based demineralized cortical bone matrix (DBX), CMC-based demineralized cortical bone matrix (DB) or CMC-based demineralized cortical bone with cancellous bone (NDDB), and the wound area was evaluated at 4, 8, and 12 weeks post-implantation. DBX showed significantly lower radiopacity, bone volume fraction, and bone mineral density than DB and NDDB before implantation. However, bone healing score, bone volume fraction, bone mineral density, and residual bone area at 4, 8, and 12 weeks post-implantation revealed no significant differences in bone healing capacity. Overall, three DBM products with different carrier molecules or bone compositions showed similar bone healing capacity.
Animals
;
Bone Matrix/*physiology
;
Bone Transplantation
;
Carboxymethylcellulose Sodium/*pharmacology
;
Histology
;
Hyaluronic Acid/*pharmacology
;
Rabbits
;
*Wound Healing
;
X-Ray Microtomography
;
X-Rays
2.Comparative Study for Preventive Effects of Intra-Abdominal Adhesion Using Cyclo-Oxygenase-2 Enzyme (COX-2) Inhibitor, Low Molecular Weight Heparin (LMWH), and Synthetic Barrier.
Yonsei Medical Journal 2013;54(6):1491-1497
PURPOSE: Postoperative adhesion is the most frequent complication of abdominal surgery. Therefore, we investigated the individual effects of synthetic barrier [hyaluronic acid/carboxymethylcellulose (HA/CMC)] and pharmacologic agents [low molecular weight heparin (LMWH) cyclo-oxygenase-2 inhibitor (COX-2 inhibitor)] using animal model of intra-abdominal adhesion. MATERIALS AND METHODS: The cecum was rubbed with sterile alcohol wet gauze until subserosal haemorrhage and punctate bleeding developed under the general anesthesia. Five animal groups were prepared using the film HA/CMC, gel HA/CMC, LMWH and COX-2 inhibitor. RESULTS: The grade of adhesion by modified Leach method for group I (control), II (film type HA/CMC), III (gel type HA/CMC), IV (LMWH) and V (COX-2 inhibitor) were 5.35+/-1.8, 6.15+/-1.3, 4.23+/-2.6, 5.05+/-0.7 and 5.50+/-0.9, respectively. Group III showed the least grade of adhesion and it is statistically significant in adhesion formation (p=0.028). The numbers of lymphocytes were significantly low in group III and group V compared to the control group (lymphocyte: p=0.004). The mast cell counts were generally low except for the control group (I: 1.05, II: 0.35, III: 0.38, IV: 0.20, V: 0.37), however, it was not statistically significant (p=0.066). CONCLUSION: The gel barriers were shown to be partly efficient in inhibiting the formation of postoperative adhesions and might provide an option for abdominal surgery to reduce postoperative adhesions. The LMWH and COX-2 inhibitor had been known for their inhibitor effect of fibrin formation and anti-angiogenic/anti-fibroblastic activity, respectively. However, their preventive effects of adhesion and fibrosis were found to be obscure.
Animals
;
Carboxymethylcellulose Sodium/metabolism
;
Cyclooxygenase 2 Inhibitors/*pharmacology
;
Heparin, Low-Molecular-Weight/*pharmacology
;
Male
;
Rats
;
Rats, Sprague-Dawley
;
Tissue Adhesions/*prevention & control
3.Phosphorylated PKM2 regulates endothelium-dependent vasodilation in diabetes.
Bin LU ; Lei TANG ; Le LI ; Xiaoyu ZHOU ; Yiping LENG ; Chengxuan QUAN
Journal of Central South University(Medical Sciences) 2023;48(5):663-670
OBJECTIVES:
Endothelium-dependent vasodilation dysfunction is the pathological basis of diabetic macroangiopathy. The utilization and adaptation of endothelial cells to high glucose determine the functional status of endothelial cells. Glycolysis pathway is the major energy source for endothelial cells. Abnormal glycolysis plays an important role in endothelium-dependent vasodilation dysfunction induced by high glucose. Pyruvate kinase isozyme type M2 (PKM2) is one of key enzymes in glycolysis pathway, phosphorylation of PKM2 can reduce the activity of pyruvate kinase and affect the glycolysis process of glucose. TEPP-46 can stabilize PKM2 in its tetramer form, reducing its dimer formation and phosphorylation. Using TEPP-46 as a tool drug to inhibit PKM2 phosphorylation, this study aims to explore the impact and potential mechanism of phosphorylated PKM2 (p-PKM2) on endothelial dependent vasodilation function in high glucose, and to provide a theoretical basis for finding new intervention targets for diabetic macroangiopathy.
METHODS:
The mice were divided into 3 groups: a wild-type (WT) group (a control group, C57BL/6 mice) and a db/db group (a diabetic group, db/db mice), which were treated with the sodium carboxymethyl cellulose solution (solvent) by gavage once a day, and a TEPP-46 group (a treatment group, db/db mice+TEPP-46), which was gavaged with TEPP-46 (30 mg/kg) and sodium carboxymethyl cellulose solution once a day. After 12 weeks of treatment, the levels of p-PKM2 and PKM2 protein in thoracic aortas, plasma nitric oxide (NO) level and endothelium-dependent vasodilation function of thoracic aortas were detected. High glucose (30 mmol/L) with or without TEPP-46 (10 μmol/L), mannitol incubating human umbilical vein endothelial cells (HUVECs) for 72 hours, respectively. The level of NO in supernatant, the content of NO in cells, and the levels of p-PKM2 and PKM2 protein were detected. Finally, the effect of TEPP-46 on endothelial nitric oxide synthase (eNOS) phosphorylation was detected at the cellular and animal levels.
RESULTS:
Compared with the control group, the levels of p-PKM2 in thoracic aortas of the diabetic group increased (P<0.05). The responsiveness of thoracic aortas in the diabetic group to acetylcholine (ACh) was 47% lower than that in the control group (P<0.05), and that in TEPP-46 treatment group was 28% higher than that in the diabetic group (P<0.05), while there was no statistically significant difference in the responsiveness of thoracic aortas to sodium nitroprusside (SNP). Compared with the control group, the plasma NO level of mice decreased in the diabetic group, while compared with the diabetic group, the phosphorylation of PKM2 in thoracic aortas decreased and the plasma NO level increased in the TEPP-46 group (both P<0.05). High glucose instead of mannitol induced the increase of PKM2 phosphorylation in HUVECs and reduced the level of NO in supernatant (both P<0.05). HUVECs incubated with TEPP-46 and high glucose reversed the reduction of NO production and secretion induced by high glucose while inhibiting PKM2 phosphorylation (both P<0.05). At the cellular and animal levels, TEPP-46 reversed the decrease of eNOS (ser1177) phosphorylation induced by high glucose (both P<0.05).
CONCLUSIONS
p-PKM2 may be involved in the process of endothelium-dependent vasodilation dysfunction in Type 2 diabetes by inhibiting p-eNOS (ser1177)/NO pathway.
Animals
;
Humans
;
Mice
;
Carboxymethylcellulose Sodium/pharmacology*
;
Diabetes Mellitus, Type 2/metabolism*
;
Endothelium, Vascular/metabolism*
;
Glucose/metabolism*
;
Human Umbilical Vein Endothelial Cells
;
Mice, Inbred C57BL
;
Nitric Oxide/metabolism*
;
Nitric Oxide Synthase Type III/metabolism*
;
Phosphorylation
;
Pyruvate Kinase/metabolism*
;
Vasodilation