1.Cloning and functional characterization of a cDNA encoding isopentenyl diphosphate isomerase involved in taxol biosynthesis in Taxus media.
Tian SHEN ; Fei QIU ; Min CHEN ; Xiao-zhong LAN ; Zhi-hua LIAO
Acta Pharmaceutica Sinica 2015;50(5):621-626
Taxol is one of the most potent anti-cancer agents, which is extracted from the plants of Taxus species. Isopentenyl diphosphate isomerase (IPI) catalyzes the reversible transformation between IPP and DMAPP, both of which are the general 5-carbon precursors for taxol biosynthesis. In the present study, a new gene encoding IPI was cloned from Taxus media (namely TmIPI with the GenBank Accession Number KP970677) for the first time. The full-length cDNA of TmIPI was 1 232 bps encoding a polypeptide with 233 amino acids, in which the conserved domain Nudix was found. Bioinformatic analysis indicated that the sequence of TmIPI was highly similar to those of other plant IPI proteins, and the phylogenetic analysis showed that there were two clades of plant IPI proteins, including IPIs of angiosperm plants and IPIs of gymnosperm plants. TmIPI belonged to the clade of gymnosperm plant IPIs, and this was consistent with the fact that Taxus media is a plant species of gymnosperm. Southern blotting analysis demonstrated that there was a gene family of IPI in Taxus media. Finally, functional verification was applied to identify the function of TmIPI. The results showed that biosynthesis of β-carotenoid was enhanced by overexpressing TmIPI in the engineered E. coli strain, and this suggested that TmIPI might be a key gene involved in isoprenoid/terpenoid biosynthesis.
Amino Acid Sequence
;
Carbon-Carbon Double Bond Isomerases
;
genetics
;
Cloning, Molecular
;
DNA, Complementary
;
genetics
;
Escherichia coli
;
Paclitaxel
;
biosynthesis
;
Phylogeny
;
Plant Proteins
;
genetics
;
Taxus
;
enzymology
;
genetics
2.Effect of Ech1 overexpression on biological behavior of mouse hepatocarcinoma Hca-P cells in vitro.
Mei WANG ; Bo SONG ; Bo WANG ; Jun ZHANG ; Jian-wu TANG
Chinese Journal of Oncology 2013;35(5):337-340
OBJECTIVETo investigate the effect of enoyl coenzyme A hydratase-1 (Ech1) on the proliferation and invasion ability of mouse hepatocarcinoma Hca-P cells in vitro.
METHODSRecombinant pcDNA3.1(+)-Ech1 gene and pcDNA3.1(+) were transfected into Hca-P cells by cationic liposomes introduction. Clone of PEch1 cells that stably expressing Ech1 and clone of control Pvector cells were screened by G418. The Ech1 expression was identified subsequently by reverse transcriptase-polymerase chain reaction (RT-PCR) and enzyme-linked immunosorbent assay (ELISA), respectively. The malignant behaviors of the cell lines were compared by proliferation, invasion and migration test.
RESULTSThe cell line Hca-P cells stably expressing Ech1 gene was constructed. The relative expression of Ech1 mRNA in the PEch1 group was 3.21 ± 0.43 and in the Pvector group was 1.44 ± 0.03, with a significant difference between the two groups (P = 0.029). The results of ELISA revealed that the expression of Ech1 protein was 0.140 ± 0.005 in the PEch1 group, 0.088 ± 0.003 in the Pvector group, and 0.078 ± 0.006 in the Hca-P group, showing a significant difference between the PEch1 group and the Pvector and Hca-P groups (P < 0.05). Transwell migration test showed that the number of penetrated cells in the PEch1 group was 143.00 ± 7.25 cells, significantly higher than that of the Pvector group (95.73 ± 3.88 cells) and un-treated Hca-1 group (106.67 ± 3.54 cells, both P < 0.05). The Transwell invasion assay showed that the number of penetrated cells was 77.20 ± 5.46 cells in the PEch1 group, significantly higher than 46.34 ± 4.35 cells in the Pvector group and 49.80 ± 5.21 cells in the un-treated Hca-1 group (both P < 0.05).
CONCLUSIONSThe results showed that overexpressed Ech1 in Hca-P cells may significantly increase the cell proliferation in a time-dependent manner. The up-regulation of Ech1 may increase to some extent the migration and invasion capacity of Hca-P cells. The efforts aiming at up-regulation of Ech1 expression may become a therapeutic target in the treatment of hepatocarcinoma.
Animals ; Carbon-Carbon Double Bond Isomerases ; genetics ; metabolism ; Cell Movement ; Cell Proliferation ; Liver Neoplasms, Experimental ; enzymology ; pathology ; Mice ; Neoplasm Invasiveness ; Plasmids ; RNA, Messenger ; metabolism ; Recombinant Proteins ; genetics ; metabolism ; Transfection ; Tumor Cells, Cultured ; Up-Regulation
3.Down-regulation of Ech1 decreases the adhesion ability of mouse hepatocarcinoma Hca-F cells.
Jun ZHANG ; Jian-wu TANG ; Ming-zhong SUN ; Shu-qing LIU ; Mei-ying SONG ; Bo WANG ; Bo SONG ; Yu-hong HUANG
Chinese Journal of Hepatology 2012;20(8):605-610
To examine the differential expression pattern of Ech1 protein in mouse Hca-F and Hca-P hepatocarcinoma cell lines with high and low rates of lymphatic metastasis, respectively, and to investigate the relationships between Ech1 expression and adhesion of Hca-F cells. Fluorescence two-dimensional difference in-gel electrophoresis (2D DIGE) and mass spectrometry were used to detect Ech1 expression. Ech1 gene silencing was achieved by stable transfection of Hca-F cells with a plasmid vector harboring short hairpin RNA (shRNA) targeting Ech1, pGPU6/GFP/Neo-shRNA-Ech1. Ech1 mRNA and protein expressions were detected by real-time quantitative polymerase chain reaction (qRT-PCR) and Western blotting analysis, respectively. Adhesive properties of cells were assessed by hematoxylin-eosin staining and fluorimetric detection of extracellular matrix (ECM) proteins. Endogenous Ech1 protein level was remarkably higher in the highly metastatic Hca-F cell line than in the Hca-P cell line (2.7-fold by 2D DIGE; 1.5-fold by Western blotting). shRNA-induced silencing of Ech1 significantly reduced the adhesion ability of Hca-F cells, as evidenced by decreased absorbance values of fibronectin and collagen I (Hca-F cells vs. pGPU6/GFP/Neo-shRNA-Ech1 cells: 1.42+/-0.26 vs. 1.01+/-0.27 and 1.14+/-0.07 vs. 0.90+/-0.09, respectively; P less than 0.05). Down-regulation of Ech1 can inhibit the adhesive capacity of metastatic Hca-F cells.
Animals
;
Carbon-Carbon Double Bond Isomerases
;
genetics
;
metabolism
;
Carcinoma, Hepatocellular
;
enzymology
;
genetics
;
pathology
;
Cell Adhesion
;
Cell Line, Tumor
;
Down-Regulation
;
Electrophoresis, Gel, Two-Dimensional
;
Gene Expression Regulation, Neoplastic
;
Liver Neoplasms
;
enzymology
;
genetics
;
pathology
;
Lymph Nodes
;
pathology
;
Lymphatic Metastasis
;
Mice
;
Plasmids
;
RNA, Messenger
;
genetics
;
metabolism
;
RNA, Small Interfering
;
genetics
;
pharmacology
;
Transfection
4.EHHADH is a key gene in fatty acid metabolism pathways in hepatocellular carcinoma: a transcriptomic analysis.
Siyu XIE ; Miaosheng LI ; Fengle JIANG ; Qian YI ; Wei YANG
Journal of Southern Medical University 2023;43(5):680-693
OBJECTIVE:
To explore the driving gene of hepatocellular carcinoma (HCC) occurrence and progression and its potential as new therapeutic target of HCC.
METHODS:
The transcriptome and genomic data of 858 HCC tissues and 493 adjacent tissues were obtained from TCGA, GEO, and ICGC databases. Gene Set Enrichment Analysis (GSEA) identified EHHADH (encoding enoyl-CoA hydratase/L-3-hydroxyacyl-CoA dehydrogenase) as the hub gene in the significantly enriched differential pathways in HCC. The downregulation of EHHADH expression at the transcriptome level was found to correlate with TP53 mutation based on analysis of the TCGA- HCC dataset, and the mechanism by which TP53 mutation caused EHHADH downregulation was explored through correlation analysis. Analysis of the data from the Metascape database suggested that EHHADH was strongly correlated with the ferroptosis signaling pathway in HCC progression, and to verify this result, immunohistochemical staining was used to examine EHHADH expression in 30 HCC tissues and paired adjacent tissues.
RESULTS:
All the 3 HCC datasets showed signficnatly lowered EHHADH expression in HCC tissues as compared with the adjacent tissues (P < 0.05) with a close correlation with the degree of hepatocyte de-differentiation (P < 0.01). The somatic landscape of HCC cohort in TCGA dataset showed that HCC patients had the highest genomic TP53 mutation rate. The transcriptomic level of PPARGC1A, the upstream gene of EHHADH, was significantly downregulated in HCC patients with TP53 mutation as compared with those without the mutation (P < 0.05), and was significantly correlated with EHHADH expression level. GO and KEGG enrichment analyses showed that EHHADH expression was significantly correlated with abnormal fatty acid metabolism in HCC. The immunohistochemical results showd that the expression level of EHHADH in HCC tissues was down-regulated, and its expression level was related to the degree of hepatocytes de-differentiation and the process of ferroptosis.
CONCLUSION
TP53 mutations may induce abnormal expression of PPARGC1A to cause downregulation of EHHADH expression in HCC. The low expression of EHHADH is closely associated with aggravation of de-differentiation and ferroptosis escape in HCC tissues, suggesting the potential of EHHADH as a therapeutic target for HCC.
Humans
;
Carcinoma, Hepatocellular/genetics*
;
Transcriptome
;
Liver Neoplasms/genetics*
;
Gene Expression Profiling
;
Fatty Acids
;
Peroxisomal Bifunctional Enzyme
5.Expression of 3b-Hydroxysteroid dehydrogenase and P450 side chain cleavage enzyme in the human uterine endometrium.
Hee Sub RHEE ; Seon Hee OH ; Bum Joo KO ; Dong Min HAN ; Byung Hun JEON ; Hyun PARK ; Hyung Bae MOON ; Won Sin KIM
Experimental & Molecular Medicine 2003;35(3):160-166
The enzyme complex 3b-hydroxysteroid dehydrogenase/delta(5)-delta(4)-isomerase (3beta-HSD) is involved in the biosynthesis of all classes of active steroids. The expression of 3beta-HSD in human uterine endometrium during the menstrual cycle and decidua was examined in an effort to understand its role during ova implantation. 3beta-HSD was weakly expressed in the glandular epithelium of the proliferative phase and moderately expressed in the glandular epithelium of secretory phase of the endometrium. In the decidua of the ectopic pregnancy, 3beta-HSD was strongly expressed. The human uterine endometrial 3beta-HSD was identified as being the same type as the placental 3beta-HSD by RT-PCR and sequence analysis. In addition to the expression of 3beta-HSD, P450scc was expressed in the decidua of the ectopic pregnancy. These results suggest that pregnenolone might be synthesized from cholesterol by P450scc de novo and then, it is converted to progesterone by 3beta-HSD in the uterine endometrium. The data implies that the endometrial 3beta-HSD can use not only the out-coming pregnenolone from the adrenal gland but also the self- made pregnenolone to produce progesterone. The de novo synthesis of progesterone in the endometrium might be a crucial factor for implantation and maintenance of pregnancy.
Cholesterol/chemistry
;
Cholesterol Side-Chain Cleavage Enzyme/*biosynthesis/genetics
;
Decidua/enzymology
;
Endometrium/*enzymology
;
Female
;
Gene Expression/physiology
;
Human
;
Menstrual Cycle/physiology
;
Multienzyme Complexes/*biosynthesis/genetics
;
Placenta/enzymology
;
Pregnancy
;
Pregnenolone/biosynthesis
;
Progesterone/biosynthesis
;
Progesterone Reductase/*biosynthesis/genetics
;
Steroid Isomerases/*biosynthesis/genetics
6.Sirt1 regulates testosterone biosynthesis in Leydig cells via modulating autophagy.
Muhammad Babar KHAWAR ; Chao LIU ; Fengyi GAO ; Hui GAO ; Wenwen LIU ; Tingting HAN ; Lina WANG ; Guoping LI ; Hui JIANG ; Wei LI
Protein & Cell 2021;12(1):67-75
Animals
;
Autophagy/genetics*
;
Cholesterol/metabolism*
;
Gene Expression Regulation
;
Integrases/metabolism*
;
Leydig Cells/metabolism*
;
Male
;
Mice, Knockout
;
Multienzyme Complexes/metabolism*
;
Phosphoproteins/metabolism*
;
Primary Cell Culture
;
Progesterone Reductase/metabolism*
;
RNA Splicing Factors/metabolism*
;
Scavenger Receptors, Class B/metabolism*
;
Sequestosome-1 Protein/metabolism*
;
Signal Transduction
;
Sirtuin 1/genetics*
;
Sodium-Hydrogen Exchangers/metabolism*
;
Steroid 17-alpha-Hydroxylase/metabolism*
;
Steroid Isomerases/metabolism*
;
Testosterone/genetics*