1.Study on chemical composition of Sambucus nigra ssp. canadensis
Journal of Medicinal Materials - Hanoi 2004;9(2):39-42
In the flowers of Sambicus nigra, flavonoids, amino acids and sugars were determined. Among them the main components were flavonoids, which accounted for 7,19±0,10%. From total flavonoid extracts, ,2 compounds were isolated by column chromatography and identified by UV,MS,and NMR spectroscope as quercetin-3-α rhamnopyranosyl- β -glucopyranose and quercetin
Chemistry
;
Flowers
;
Flavonoids
;
Amino Acids
;
Carbohydrates
2.Influence of processing on chemical composition and biological activities of Radix Ophiopogi
Journal of Medicinal Materials - Hanoi 2004;9(2):63-68
Fresh,directly roasted and sand-roasted samples of the radix of ophlogogon contain also saponosids, flavonoids, aminoacides, carotenoids, sugars, fats. They are no significant differences. In decoction 1:1 form, ophlogogon with the dose of 2,5gr/kg of body weight manifests the inhibition of cough reflexe similar to terpine-codeine preparation;with the dose of 10mg /kg bd, no effect of phlegm clearing is manifested
Chemistry
;
Biology
;
Flavonoids
;
Carotenoids
;
Carbohydrates
;
fats
3.Chemical synthesis of a synthetically useful L-galactosaminuronic acid building block.
Chun-Jun QIN ; Hong-Li HOU ; Mei-Ru DING ; Yi-Kuan QI ; Guang-Zong TIAN ; Xiao-Peng ZOU ; Jun-Jie FU ; Jing HU ; Jian YIN
Chinese Journal of Natural Medicines (English Ed.) 2022;20(5):387-392
Most bacterial cell surface glycans are structurally unique, and have been considered as ideal target molecules for the developments of detection and diagnosis techniques, as well as vaccines. Chemical synthesis has been a promising approach to prepare well-defined oligosaccharides, facilitating the structure-activity relationship exploration and biomedical applications of bacterial glycans. L-Galactosaminuronic acid is a rare sugar that has been only found in cell surface glycans of gram-negative bacteria. Here, an orthogonally protected L-galactosaminuronic acid building block was designed and chemically synthesized. A synthetic strategy based on glycal addition and TEMPO/BAIB-mediated C6 oxidation served well for the transformation of commercial L-galactose to the corresponding L-galactosaminuronic acid. Notably, the C6 oxidation of the allyl glycoside was more efficient than that of the selenoglycoside. In addition, a balance between the formation of allyl glycoside and the recovery of selenoglycoside was essential to improve efficiency of the NIS/TfOH-catalyzed allylation. This synthetically useful L-galactosaminuronic acid building block will provide a basis for the syntheses of complex bacterial glycans.
Carbohydrates
;
Glycosides
;
Oligosaccharides
;
Oxidation-Reduction
;
Polysaccharides/chemistry*
4.Investigation and optimization on ability of enzymatic hydrolysis of Mori Cortex residue.
Xin-Yao SU ; Chun-Li JIANG ; Ya-Chun XU ; Meng-Chu SUN ; Chen-Hao HUANG ; Jian-Ping XUE ; Cai-Xia WANG
China Journal of Chinese Materia Medica 2018;43(1):86-91
Residue of Mori Cortex was studied to optimize its enzymatic hydrolysis process, and explore its potential as a carbon source for biochemistry and biofuel production. The cellulose content of diluted acid pretreated (DAP) and non-pretreated from Mori Cortex were measured in this study, and the results showed that the cellulose content of DAP and non-pretreated from Mori Cortex were 52.5% and 47%, respectively. This higher cellulose content indicated that residue of Mori Cortex had the potential to act as a carbon source for biochemistry and biofuel production. Enzymatic hydrolysis of pretreated and non-pretreated from Mori Cortex was conducted under different enzyme loading amount. 40 FPU·(g DW)⁻¹ enzyme loading was determined as the optimal amount by comparing the yield of sugar and the rate of enzymolysis. Under this condition, the concentrations of glucose, xylose, arabinose sugar were 23.82, 4.84, 3.6 g·L⁻¹, and the corresponding enzymatic hydrolysis rate was 45.33% which was 2.3 times higher than that of non-pretreated from Morus alba residues. Fed-batch enzymatic hydrolysis was conducted finally to get higher sugar yield, and the final glucose concentration reached up to 38 g·L⁻¹ with the enzymatic hydrolysis rate of 36.19%. The results indicated that Mori Cortex residue had higher cellulose and hemicellulose contents, so it had the potential to become a carbon source to produce the bio-chemicals and biofuels. Through enzymatic hydrolysis, it can be converted into microbial available monosaccharides; and through fermentation, it can be converted into high value-added chemicals, biofuels, etc., to solve the problem of residue pollution, and achieve the sustainable development and greening of Chinese pharmaceutical production process.
Carbohydrates
;
Cellulose
;
chemistry
;
Enzymes
;
metabolism
;
Fermentation
;
Hydrolysis
;
Morus
;
chemistry
5.High titer ethanol production from an atmospheric glycerol autocatalytic organosolv pretreated wheat straw.
Liang WANG ; Jianquan LIU ; Zhe ZHANG ; Feiyang ZHANG ; Junli REN ; Fubao SUN ; Zhenyu ZHANG ; Cancan DING ; Qiaowen LIN
Chinese Journal of Biotechnology 2015;31(10):1468-1483
The expensive production of bioethanol is because it has not yet reached the 'THREE-HIGH' (High-titer, high-conversion and high-productivity) technical levels of starchy ethanol production. To cope with it, it is necessary to implement a high-gravity mash bioethanol production (HMBP), in which sugar hydrolysates are thick and fermentation-inhibitive compounds are negligible. In this work, HMBP from an atmospheric glycerol autocatalytic organosolv pretreated wheat straw was carried out with different fermentation strategies. Under an optimized condition (15% substrate concentration, 10 g/L (NH4)2SO4, 30 FPU/g dry matter, 10% (V/V) inoculum ratio), HMBP was at 31.2 g/L with a shaking simultaneous saccharification and fermentation (SSF) at 37 degrees C for 72 h, and achieved with a conversion of 73% and a productivity of 0.43 g/(L x h). Further by a semi-SFF with pre-hydrolysis time of 24 h, HMBP reached 33.7 g/L, the conversion and productivity of which was 79% and 0.47 g/(L x h), respectively. During the SSF and semi-SSF, more than 90% of the cellulose in both substrates were hydrolyzed into fermentable sugars. Finally, a fed-batch semi-SFF was developed with an initial substrate concentration of 15%, in which dried substrate (= the weight of the initial substrate) was divided into three portions and added into the conical flask once each 8 h during the first 24 h. HMBP achieved at 51.2 g/L for 72 h with a high productivity of 0.71 g/(L x h) while a low cellulose conversion of 62%. Interestingly, the fermentation inhibitive compound was mainly acetic acid, less than 3.0 g/L, and there were no other inhibitors detected, commonly furfural and hydroxymethyl furfural existing in the slurry. The data indicate that the lignocellulosic substrate subjected to the atmospheric glycerol autocatalytic organosolv pretreatment is very applicable for HMBP. The fed-batch semi-SFF is effective and desirable to realize an HMBP.
Biofuels
;
Carbohydrates
;
chemistry
;
Cellulose
;
chemistry
;
Ethanol
;
metabolism
;
Fermentation
;
Furaldehyde
;
chemistry
;
Glycerol
;
chemistry
;
Hydrolysis
;
Triticum
6.Effect of pretreatment on topochemical and ultrastructural changes of lignocellulose plant cell walls: a review.
Zhe JI ; Zhe LING ; Xun ZHANG ; Jianfeng MA ; Feng XU
Chinese Journal of Biotechnology 2014;30(5):707-715
Deconstruction of lignocellulosic plant cell walls to fermentable sugars by biochemical means is impeded by several poorly understood ultrastructural and chemical barriers. Pretreatment is an essential step by altering the morphological and compositional characteristics of biomass to enhance the sugar release during enzymatic hydrolysis. Therefore, getting insight into this field is necessary to improve the conversion of biomass into biofuels. In this review, we highlight our recent understanding on the impact of various promising pretreatments on biomass, with emphasis on the topochemical and ultrastructural changes of plant cell walls that are related to the reduction of recalcitrance and the consequence of saccharification. It will lend support to the scientific research and development with respect to biomass conversion.
Biofuels
;
Biomass
;
Carbohydrates
;
chemistry
;
Cell Wall
;
ultrastructure
;
Fermentation
;
Hydrolysis
;
Lignin
;
chemistry
;
Plant Cells
;
ultrastructure
7.Relationships between changes of kernel nutritive components and seed vigor during development stages of F1 seeds of sh2 sweet corn.
Dong-dong CAO ; Jin HU ; Xin-xian HUANG ; Xian-ju WANG ; Ya-jing GUAN ; Zhou-fei WANG
Journal of Zhejiang University. Science. B 2008;9(12):964-968
The changes of kernel nutritive components and seed vigor in F1 seeds of sh2 sweet corn during seed development stage were investigated and the relationships between them were analyzed by time series regression (TSR) analysis. The results show that total soluble sugar and reducing sugar contents gradually declined, while starch and soluble protein contents increased throughout the seed development stages. Germination percentage, energy of germination, germination index and vigor index gradually increased along with seed development and reached the highest levels at 38 d after pollination (DAP). The TSR showed that, during 14 to 42 DAP, total soluble sugar content was independent of the vigor parameters determined in present experiment, while the reducing sugar content had a significant effect on seed vigor. TSR equations between seed reducing sugar and seed vigor were also developed. There were negative correlations between the seed reducing sugar content and the germination percentage, energy of germination, germination index and vigor index, respectively. It is suggested that the seed germination, energy of germination, germination index and vigor index could be predicted by the content of reducing sugar in sweet corn seeds during seed development stages.
Carbohydrates
;
analysis
;
Germination
;
Seeds
;
growth & development
;
Zea mays
;
chemistry
;
growth & development
8.Sialoglycoproteins and penultimate sugar expression pattern in developing murine olfactory and respiratory mucosa.
Joo Heon YOON ; Kyung Su KIM ; Sung Shik KIM ; Jeung Gweon LEE
Yonsei Medical Journal 1998;39(1):20-26
Sialic acid residues are constant constituents of the glycoproteins of the airways in all species. Sialoglycoproteins are the main acidic glycoprotein and their functions are to mediate cell adherence, to control the viscoelasticity of mucus and to serve as receptor sites for the binding of exogenous macromolecules. The purpose of this study was to investigate the differences in the distribution of sialoglycoproteins as a terminal sugar and in the composition of the penultimate sugar according to aging in the murine nasal respiratory and olfactory mucosa. Nasal cavities of mice (BALB/c) were fixed by intracardiac perfusion with 2.0% glutaraldehyde and embedded in Epon 812. First, the serial sections were stained with Maackia amurensis agglutinin (MAA) and Sambucus nigra agglutinin (SNA). Then, the adjacent sections were stained with DBA and PNA before and after neuraminidase digestion in all experimental groups. Apical cell surfaces of olfactory mucosa and cilia on a few ciliated cells in the mucosa of the septum and nasal floor were labelled with MAA, but cell surfaces of respiratory mucosa, Bowman's glands and goblet cells were not labelled with MAA, irrespective of aging. Apical cell surfaces of both olfactory and respiratory mucosa and Bowman's glands were stained with SNA, however, goblet cells were not labelled with SNA. After neuraminidase digestion to remove terminal sialic acid residues of sialoglycoproteins, only cell surfaces of respiratory mucosa were labelled with PNA, but goblet cells, cell surfaces of olfactory mucosa and Bowman's glands were not labelled with PNA. Cell surfaces and Bowman's glands of olfactory mucosa were labelled with DBA after neuraminidase digestion, but cell surfaces of respiratory mucosa and goblet cells were not labelled with DBA. Our results indicate that there were different carbohydrate structures of sialoglycoconjugates in olfactory and respiratory mucosa, and it was not influenced by aging.
Aging/metabolism*
;
Animal
;
Carbohydrates/analysis*
;
Mice
;
Mice, Inbred BALB C
;
Nasal Mucosa/chemistry*
;
Olfactory Mucosa/chemistry*
;
Sialoglycoproteins/analysis*
9.Changes of alkaline phosphatase sugar chains in hepatocellular carcinoma tissue.
Guo-qian CHEN ; Qing ZHANG ; Yan-fang XU ; Wan-zhong ZHANG ; Ming GUAN ; Bing SU ; Hui-qi LIANG ; Yuan LU
Chinese Journal of Hepatology 2003;11(12):739-741
OBJECTIVETo investigate the changes of sugar chain structures of alkaline phosphatase (ALP) in hepatoma tissue and its relation to the invasiveness of hepatocellular carcinoma (HCC).
METHODSThe binding ratios of ALP from 9 normal liver tissues, 16 hepatoma tissues and 16 noncancerous tissues surrounding hepatoma were analysed by affinity chromatography on various lectin columns including leukoagglutinating phytohemagglutinin (L-PHA), lentil lectin (LCA), Datura stramonium agglutinin (DSA), erythroagglutinating phytohemagglutinin (E-PHA) and Sambucus nigra bark agglutinin (SNA).
RESULTSThe binding ratios of ALP on L-PHA (22.94%+/-5.30%), DSA (55.97%+/-13.72%), LCA (38.16%+/-8.87%), E-PHA (11.56%+/-4.81%) and SNA (69.80%+/-13.71%) in HCC tissues were significantly increased (P<0.01) compared with that in normal liver tissues (L-PHA 5.89%+/-2.75%, DSA 36.20%+/-11.58%, LCA 17.90%+/-6.71%, E-PHA 5.38%+/-2.20%, SNA 57.32%+/-11.27%), respectively. t values between the two groups were 8.94, 3.64, 5.94, 3.62 and 2.32, respectively. L-PHA-binding ratio (25.84%+/-4.67%) of ALP in HCC with invasiveness was significantly higher than that (18.10%+/-3.64%) without invasiveness (t=3.71, P<0.01).
CONCLUSIONThe changes of ALP sugar chain structures occur in HCC tissue. b1-6 branching sugar chain structure of ALP is related to the invasiveness of HCC.
Alkaline Phosphatase ; chemistry ; Carbohydrates ; chemistry ; Carcinoma, Hepatocellular ; enzymology ; pathology ; Chromatography, Affinity ; Humans ; Lectins ; metabolism ; Liver Neoplasms ; enzymology ; pathology ; Neoplasm Invasiveness
10.Effects of leaf removal on growth and physiological characteristics of Rehmannia glutinosa.
Miaomiao NIU ; Huamin FAN ; Juan LI ; Jiafang DU ; Xinjian CHEN ; Zhongyi ZHANG
China Journal of Chinese Materia Medica 2011;36(2):107-111
Effects of the leaf-clipped treatment on growth and physiological properties of Rehmannia glutinosa were studied. Result showed that with the increase of the cutting leaves degree, growth rates of shoots and roots were decreased, sugar contents declined, chlorophyll contents decreased and root activities also inhibited. Compared with the normal plant (CK), the root inhibit rates in T1, T2, T3 were 17.53%, 33.41%, 59.47%, respectively. Physiological indexes including chlorophyll contents, root activities and sugar contents also were impacted by the leaf-clipped treatment. The results indicate that to balance source-sink relationship is a very essential method for improving production of R. glutinosa.
Agriculture
;
Carbohydrate Metabolism
;
Carbohydrates
;
analysis
;
Chlorophyll
;
analysis
;
metabolism
;
Plant Leaves
;
chemistry
;
growth & development
;
physiology
;
Rehmannia
;
chemistry
;
growth & development
;
physiology