1.Research advances in the role of O-GlcNAc glycosylation in ischemic stroke
Journal of Apoplexy and Nervous Diseases 2025;42(3):262-266
O-GlcNAc glycosylation, as the most extensive type of glycosylation modification, is involved in the development and prognosis of ischemic stroke by regulating excitatory toxicity, mitochondrial function, synaptic plasticity, and immune metabolism and inhibiting endoplasmic reticulum stress and inflammatory response, and regulation of O-GlcNAc glycosylation is considered a promising therapeutic target for ischemic stroke.This article reviews the characteristics and specific mechanisms of O-GlcNAc glycosylation in ischemic stroke,in order to provide new ideas for the prevention and treatment of ischemic stroke.
Glycosylation
2.Investigating the impact of silencing an RNA-binding protein gene SlRBP1 on tomato photosynthesis through RNA-sequencing analysis.
Xiwen ZHOU ; Liqun MA ; Hongliang ZHU
Chinese Journal of Biotechnology 2024;40(1):150-162
Photosynthesis in plants directly affects the synthesis and accumulation of organic matter, which directly influences crop yield. RNA-binding proteins (RBPs) are involved in the regulation of a variety of physiological functions in plants, while the functions of RBPs in photosynthesis have not been clearly elucidated. To investigate the effect of a glycine-rich RNA-binding protein (SlRBP1) in tomato on plant photosynthesis, a stably inherited SlRBP1 silenced plant in Alisa Craig was obtained by plant tissue culture using artificial small RNA interference. It turns out that the size of the tomato fruit was reduced and leaves significantly turned yellow. Chlorophyll(Chl) content measurement, Chl fluorescence imaging and chloroplast transmission electron microscopy revealed that the chloroplast morphology and structure of the leaves of tomato amiR-SlRBP1 silenced plants were disrupted, and the chlorophyll content was significantly reduced. Measurement of photosynthesis rate of wild-type and amiR-SlRBP1 silenced plants in the same period demonstrated that the photosynthetic rate of these plants was significantly reduced, and analysis of RNA-seq data indicated that silencing of SlRBP1 significantly reduced the expression of photosynthesis-related genes, such as PsaE, PsaL, and PsbY, and affected the yield of tomato fruits through photosynthesis.
RNA
;
Solanum lycopersicum/genetics*
;
Photosynthesis/genetics*
;
Chlorophyll
;
RNA-Binding Proteins/genetics*
3.Progress in targeted inhibition of aerobic glycolysis combined with immunotherapy for renal cell carcinoma.
Kun ZHANG ; Mengyao RU ; Jiayuan WANG ; Jumei ZHAO ; Lan SHEN
Chinese Journal of Cellular and Molecular Immunology 2024;40(1):74-79
Tumor aerobic glycolysis is one of the main features of tumor metabolic reprogramming. This abnormal glycolytic metabolism provides bioenergy and biomaterials for tumor growth and proliferation. It is worth noting that aerobic glycolysis will not only provide biological materials and energy for tumor cells, but also help tumor cells to escape immune surveillance through regulation of immune microenvironment, thereby resisting tumor immunotherapy and promoting tumor progression. Based on the pathogenesis of renal cell carcinoma, this paper describes the characteristics of aerobic glycolysis, the effect of glycolytic metabolism on the immune microenvironment of renal cell carcinoma, the effect of glycolysis inhibitors on the immune microenvironment of renal cell carcinoma, and the prospect of glycolysis inhibitors combined with immune checkpoint inhibitors in the treatment of renal cell carcinoma.
Humans
;
Carcinoma, Renal Cell/therapy*
;
Immunotherapy
;
Glycolysis
;
Metabolic Reprogramming
;
Kidney Neoplasms/therapy*
;
Tumor Microenvironment
4.A case of Congenital disorder of glycosylation due to SSR4 gene deletion.
Lingwei WENG ; Qingqing DENG ; Xiuli CHEN ; Kai WANG ; Jie SHAO
Chinese Journal of Medical Genetics 2023;40(3):364-367
OBJECTIVE:
To explore the clinical and molecular characteristics of a child with Congenital disorders of glycosylation (CDG).
METHODS:
A 4-month-old boy who had presented at the Children's Hospital Affiliated to Zhejiang University Medical School on December 31, 2019 due to feeding difficulties after birth was selected as the study subject. High-throughput sequencing was carried out for the patient, and real-time qPCR was used for validating the suspected deletion fragments and the carrier status of other members of his family.
RESULTS:
High-throughput sequencing revealed that the child had lost the capture signal for chrX: 153 045 645-153 095 809 (approximately 50 kb), which has involved 4 OMIM genes including SRPK3, IDH3G, SSR4 and PDZD4. qPCR verified that the copy number in this region was zero, while that of his elder brother and parents was all normal.
CONCLUSION
The deletion of the fragment containing the SSR4 gene in the Xq28 region probably underlay the SSR4-CDG in this child.
Aged
;
Child
;
Humans
;
Infant
;
Male
;
Gene Deletion
;
Glycosylation
;
High-Throughput Nucleotide Sequencing
;
Neoplasm Proteins
;
Parents
;
Siblings
5.CHD1 deletion stabilizes HIF1α to promote angiogenesis and glycolysis in prostate cancer.
Yu-Zhao WANG ; Yu-Chen QIAN ; Wen-Jie YANG ; Lei-Hong YE ; Guo-Dong GUO ; Wei LV ; Meng-Xi HUAN ; Xiao-Yu FENG ; Ke WANG ; Zhao YANG ; Yang GAO ; Lei LI ; Yu-Le CHEN
Asian Journal of Andrology 2023;25(2):152-157
Chromodomain-helicase-DNA-binding protein 1 (CHD1) deletion is among the most common mutations in prostate cancer (PCa), but its role remains unclear. In this study, RNA sequencing was conducted in PCa cells after clustered regularly interspaced palindromic repeat (CRISPR)/CRISPR-associated protein 9 (Cas9)-based CHD1 knockout. Gene set enrichment analysis (GSEA) indicated upregulation of hypoxia-related pathways. A subsequent study confirmed that CHD1 deletion significantly upregulated hypoxia-inducible factor 1α (HIF1α) expression. Mechanistic investigation revealed that CHD1 deletion upregulated HIF1α by transcriptionally downregulating prolyl hydroxylase domain protein 2 (PHD2), a prolyl hydroxylase catalyzing the hydroxylation of HIF1α and thus promoting its degradation by the E3 ligase von Hippel-Lindau tumor suppressor (VHL). Functional analysis showed that CHD1 deletion promoted angiogenesis and glycolysis, possibly through HIF1α target genes. Taken together, these findings indicate that CHD1 deletion enhances HIF1α expression through PHD2 downregulation and therefore promotes angiogenesis and metabolic reprogramming in PCa.
Male
;
Humans
;
Von Hippel-Lindau Tumor Suppressor Protein/metabolism*
;
DNA-Binding Proteins/metabolism*
;
Prolyl Hydroxylases/metabolism*
;
Hypoxia
;
Prostatic Neoplasms/pathology*
;
Glycolysis
;
Hypoxia-Inducible Factor 1, alpha Subunit/metabolism*
;
Cell Line, Tumor
;
DNA Helicases/metabolism*
6.Advances in the diagnosis and treatment of phosphomannomutase 2 deficiency.
Chinese Journal of Contemporary Pediatrics 2023;25(2):223-228
Phosphomannomutase 2 deficiency is the most common form of N-glycosylation disorders and is also known as phosphomannomutase 2-congenital disorder of glycosylation (PMM2-CDG). It is an autosomal recessive disease with multi-system involvements and is caused by mutations in the PMM2 gene (OMIM: 601785), with varying severities in individuals. At present, there is still no specific therapy for PMM2-CDG, and early identification, early diagnosis, and early treatment can effectively prolong the life span of pediatric patients. This article reviews the advances in the diagnosis and treatment of PMM2-CDG.
Humans
;
Child
;
Congenital Disorders of Glycosylation/therapy*
;
Mutation
7.Effect and Mechanism of Atorvastatin on Reversing Drug Resistance in Leukemia by Regulating Glycolysis through PTEN/mTOR Pathway.
Journal of Experimental Hematology 2023;31(1):38-44
OBJECTIVE:
To investigate the influence and mechanism of atorvastatin on glycolysis of adriamycin resistant acute promyelocytic leukemia (APL) cell line HL-60/ADM.
METHODS:
HL-60/ADM cells in logarithmic growth phase were treated with different concentrations of atorvastatin, then the cell proliferation activity was measured by CCK-8 assay, the apoptosis was detected by flow cytometry, the glycolytic activity was checked by glucose consumption test, and the protein expressions of PTEN, p-mTOR, PKM2, HK2, P-gp and MRP1 were detected by Western blot. After transfection of PTEN-siRNA into HL-60/ADM cells, the effects of low expression of PTEN on atorvastatin regulating the behaviors of apoptosis and glycolytic metabolism in HL-60/ADM cells were further detected.
RESULTS:
CCK-8 results showed that atorvastatin could inhibit the proliferation of HL-60/ADM cells in a concentration-dependent and time-dependent manner (r=0.872, r=0.936), and the proliferation activity was inhibited most significantly when treated with 10 μmol/L atorvastatin for 24 h, which was decreased to (32.3±2.18)%. Flow cytometry results showed that atorvastatin induced the apoptosis of HL-60/ADM cells in a concentration-dependent manner (r=0.796), and the apoptosis was induced most notably when treated with 10 μmol/L atorvastatin for 24 h, which reached to (48.78±2.95)%. The results of glucose consumption test showed that atorvastatin significantly inhibited the glycolytic activity of HL-60/ADM cells in a concentration-dependent and time-dependent manner (r=0.915, r=0.748), and this inhibition was most strikingly when treated with 10 μmol/L atorvastatin for 24 h, reducing the relative glucose consumption to (46.53±1.71)%. Western blot indicated that the expressions of p-mTOR, PKM2, HK2, P-gp and MRP1 protein were decreased in a concentration-dependent manner (r=0.737, r=0.695, r=0.829, r=0.781, r=0.632), while the expression of PTEN protein was increased in a concentration-dependent manner (r=0.531), when treated with different concentrations of atorvastatin for 24 h. After PTEN-siRNA transfected into HL-60/ADM cells, it showed that low expression of PTEN had weakened the promoting effect of atorvastatin on apoptosis and inhibitory effect on glycolysis and multidrug resistance.
CONCLUSION
Atorvastatin can inhibit the proliferation, glycolysis, and induce apoptosis of HL-60/ADM cells. It may be related to the mechanism of increasing the expression of PTEN, inhibiting mTOR activation, and decreasing the expressions of PKM2 and HK2, thus reverse drug resistance.
Humans
;
Atorvastatin/pharmacology*
;
PTEN Phosphohydrolase/pharmacology*
;
Sincalide/metabolism*
;
Drug Resistance, Neoplasm/genetics*
;
TOR Serine-Threonine Kinases/metabolism*
;
Leukemia, Promyelocytic, Acute/drug therapy*
;
Doxorubicin/pharmacology*
;
Apoptosis
;
RNA, Small Interfering/pharmacology*
;
Glycolysis
;
Glucose/therapeutic use*
;
Cell Proliferation
8.Aerobic glycolysis in colon cancer is repressed by naringin via the HIF1Α pathway.
Guangtao PAN ; Ping ZHANG ; Aiying CHEN ; Yu DENG ; Zhen ZHANG ; Han LU ; Aoxun ZHU ; Cong ZHOU ; Yanran WU ; Sen LI
Journal of Zhejiang University. Science. B 2023;24(3):221-231
Metabolic reprogramming is a common phenomenon in cancer, with aerobic glycolysis being one of its important characteristics. Hypoxia-inducible factor-1α (HIF1Α) is thought to play an important role in aerobic glycolysis. Meanwhile, naringin is a natural flavanone glycoside derived from grapefruits and many other citrus fruits. In this work, we identified glycolytic genes related to HIF1Α by analyzing the colon cancer database. The analysis of extracellular acidification rate and cell function verified the regulatory effects of HIF1Α overexpression on glycolysis, and the proliferation and migration of colon cancer cells. Moreover, naringin was used as an inhibitor of colon cancer cells to illustrate its effect on HIF1Α function. The results showed that the HIF1Α and enolase 2 (ENO2) levels in colon cancer tissues were highly correlated, and their high expression indicated a poor prognosis for colon cancer patients. Mechanistically, HIF1Α directly binds to the DNA promoter region and upregulates the transcription of ENO2; ectopic expression of ENO2 increased aerobic glycolysis in colon cancer cells. Most importantly, we found that the appropriate concentration of naringin inhibited the transcriptional activity of HIF1Α, which in turn decreased aerobic glycolysis in colon cancer cells. Generally, naringin reduces glycolysis in colon cancer cells by reducing the transcriptional activity of HIF1Α and the proliferation and invasion of colon cancer cells. This study helps to elucidate the relationship between colon cancer progression and glucose metabolism, and demonstrates the efficacy of naringin in the treatment of colon cancer.
Glycolysis
;
Colonic Neoplasms/metabolism*
;
Humans
;
Hypoxia-Inducible Factor 1, alpha Subunit/metabolism*
;
Phosphopyruvate Hydratase/metabolism*
;
Flavanones/pharmacology*
;
Cell Line, Tumor
;
Databases, Genetic
;
Cell Proliferation/drug effects*
;
Transfection
;
Warburg Effect, Oncologic
9.A Nested Case-Control Study to Explore the Association between Immunoglobulin G N-glycans and Ischemic Stroke.
Bi Yan WANG ; Man Shu SONG ; Jie ZHANG ; Xiao Ni MENG ; Wei Jia XING ; You Xin WANG
Biomedical and Environmental Sciences 2023;36(5):389-396
OBJECTIVE:
This study prospectively investigates the association between immunoglobulin G (IgG) N-glycan traits and ischemic stroke (IS) risk.
METHODS:
A nested case-control study was conducted in the China suboptimal health cohort study, which recruited 4,313 individuals in 2013-2014. Cases were identified as patients diagnosed with IS, and controls were 1:1 matched by age and sex with cases. IgG N-glycans in baseline plasma samples were analyzed.
RESULTS:
A total of 99 IS cases and 99 controls were included, and 24 directly measured glycan peaks (GPs) were separated from IgG N-glycans. In directly measured GPs, GP4, GP9, GP21, GP22, GP23, and GP24 were associated with the risk of IS in men after adjusting for age, waist and hip circumference, obesity, diabetes, hypertension, and dyslipidemia. Derived glycan traits representing decreased galactosylation and sialylation were associated with IS in men (FBG2S2/(FBG2 + FBG2S1 + FBG2S2): odds ratio ( OR) = 0.92, 95% confidence interval ( CI): 0.87-0.97; G1 n: OR = 0.74, 95% CI: 0.63-0.87; G0 n: OR = 1.12, 95% CI: 1.03-1.22). However, these associations were not found among women.
CONCLUSION
This study validated that altered IgG N-glycan traits were associated with incident IS in men, suggesting that sex discrepancies might exist in these associations.
Male
;
Humans
;
Female
;
Immunoglobulin G/metabolism*
;
Ischemic Stroke
;
Case-Control Studies
;
Cohort Studies
;
Glycosylation
;
Polysaccharides
10.A new biosynthesis route for production of 5-aminovalanoic acid, a biobased plastic monomer.
Yaqi KANG ; Ruoshi LUO ; Fanzhen LIN ; Jie CHENG ; Zhen ZHOU ; Dan WANG
Chinese Journal of Biotechnology 2023;39(5):2070-2080
5-aminovalanoic acid (5AVA) can be used as the precursor of new plastics nylon 5 and nylon 56, and is a promising platform compound for the synthesis of polyimides. At present, the biosynthesis of 5-aminovalanoic acid generally is of low yield, complex synthesis process and high cost, which hampers large-scale industrial production. In order to achieve efficient biosynthesis of 5AVA, we developed a new pathway mediated by 2-keto-6-aminohexanoate. By combinatory expression of L-lysine α-oxidase from Scomber japonicus, α-ketoacid decarcarboxylase from Lactococcus lactis and aldehyde dehydrogenase from Escherichia coli, the synthesis of 5AVA from L-lysine in Escherichia coli was achieved. Under the initial conditions of glucose concentration of 55 g/L and lysine hydrochloride of 40 g/L, the final consumption of 158 g/L glucose and 144 g/L lysine hydrochloride, feeding batch fermentation to produce 57.52 g/L of 5AVA, and the molar yield is 0.62 mol/mol. The new 5AVA biosynthetic pathway does not require ethanol and H2O2, and achieved a higher production efficiency as compared to the previously reported Bio-Chem hybrid pathway mediated by 2-keto-6-aminohexanoate.
Nylons
;
Lysine/metabolism*
;
Hydrogen Peroxide/metabolism*
;
Metabolic Engineering
;
Plastics/metabolism*
;
Fermentation
;
Escherichia coli/metabolism*
;
Aminocaproates/metabolism*

Result Analysis
Print
Save
E-mail