1.Function, structure and catalytic mechanism of sucrose phosphate synthase: a review.
Jiyong SU ; Yuan YAO ; Yuhan LIU ; Qiuyu HAN ; Wenlu ZHANG
Chinese Journal of Biotechnology 2021;37(6):1858-1868
Sucrose is a natural product occurs widely in nature. In living organisms such as plants, sucrose phosphate synthase (SPS) is the key rate-limiting enzyme for sucrose synthesis. SPS catalyzes the synthesis of sucrose-6-phosphate, which is further hydrolyzed by sucrose phosphatase to form sucrose. Researches on SPS in recent decades have been focused on the determination of enzymatic activity of SPS, the identification of the inhibitors and activators of SPS, the covalent modification of SPS, the carbohydrate distribution in plants regulated by SPS, the mechanism for promoting plant growth by SPS, the sweetness of fruit controlled by SPS, and many others. A systematic review of these aspects as well as the crystal structure and catalytic mechanism of SPS are presented.
Carbohydrate Metabolism
;
Glucosyltransferases/metabolism*
;
Plants/metabolism*
;
Sucrose
2.The Effect of Arterial Hypoxemia on Cerebral Blood Flow and Metabolism .
Korean Journal of Anesthesiology 1981;14(1):26-30
In anesthetized normocapnic and normotensive dogs, the effect of arterial hypoxemia on cerebral blood flow and oxidative carbohydrate metabolism was studied. The results are as follows: 1) The hypoxic vasodilatory effect on cerevral vessels is intact even at profound systemic hypoxemia(Pao2 30 torr) if Paco2 is controlled within normal limits. 2) CMRO2 did not significantly increase above the normal even during profound arterial hopoxemis, indicating that CMRO2 levels are poor indices of hypoxia. 3) A disporportinately high glycolysis at Pao2 of 50 torr suggested early cerebral metabolic changes which became more marked with further decrease in Pao2. 4) One hour after restitution of normoxia, however, carebral blood flow and metabolism manifested complete recovery. 6) It is concluded that a transient(20 minutes) profoun systemic arterial hypoxemia does not produce prolonged disorder of cerebral blood flow and oxidative carbohydrate metabolism provided that the cerebral perfusion pressure is kept normal.
Animals
;
Anoxia*
;
Carbohydrate Metabolism
;
Cerebrovascular Circulation*
;
Dogs
;
Glycolysis
;
Metabolism*
4.Cloning, expression and purification of fructose-2, 6-bisphosphatase gene CpF2KP in papaya.
Liping ZUO ; Qiuxia ZENG ; Xiaobing ZHAO ; Liyuan YANG ; Liangwei XU ; Juan LAI ; Jingjing YUE
Chinese Journal of Biotechnology 2023;39(2):614-624
Papaya, which is mainly cultivated in the southeastern region of China, is one of the four famous fruits in Lingnan. It is favored by people because of its edible and medicinal value. Fructose-6-phosphate, 2-kinase/fructose-2, 6-bisphosphatase (F2KP) is a unique bifunctional enzyme with a kinase domain and an esterase domain that catalyzes the synthesis and degradation of fructose-2, 6-bisphosphate (Fru-2, 6-P2), an important regulator of glucose metabolism in organisms. In order to study the function of the gene CpF2KP encoding the enzyme in papaya, it is particularly important to obtain the target protein. In this study, the coding sequence (CDS) of CpF2KP, with a full-length of 2 274 bp, was got from the papaya genome. The amplified sequence of full-length CDS was cloned into the vector PGEX-4T-1 which was double digested with EcoR I and BamH I. The amplified sequence was constructed into a prokaryotic expression vector by genetic recombination. After exploring the induction conditions, the results of SDS-PAGE showed that the size of the recombinant GST-CpF2KP protein was about 110 kDa. The optimum IPTG concentration and temperature for CpF2KP induction were 0.5 mmol/L and 28 ℃, respectively. The purified sin[A1] gle target protein was obtained after purifying the induced CpF2KP protein. In addition, the expression level of this gene was detected in different tissues, and showed that the gene was expressed at the highest level in seeds and the lowest in pulp. This study provides an important basis for further revealing the function of CpF2KP protein and studying the involved biological processes of this gene in papaya.
Humans
;
Carica/genetics*
;
Recombinant Proteins
;
Carbohydrate Metabolism
;
Cloning, Molecular
;
China
5.Assessment of energy expenditure and body composition in cancer patients.
Guo-hao WU ; Dong-xing CAO ; Jia WEI ; Ying-jun QUAN ; Zhao-han WU
Chinese Journal of Surgery 2008;46(24):1906-1909
OBJECTIVETo demonstrate the changes of resting energy expenditure (REE), substrate metabolism and body composition in cancer patients.
METHODSFrom September 2004 to March 2008, REE, carbohydrate oxidation (CO) and fat oxidation (FO) in 936 cancer patients and 840 control subjects were measured by indirect calorimetry. Bioelectrical impedance appliance was applied to assess intracellular fluid, extracellular fluid, fat mass (FM) and fat free mass (FFM) in the two groups.
RESULTSNo difference in REE was found between the cancer patients and non-cancer patients [(1452.2 +/- 196.4) kcal/d vs. (1429.5 +/- 182.6) kcal/d, P = 0.136]. But REE/FFM and REE/pREE were elevated in cancer patients than in controls (all P < 0.05). Of the cancer patients, 48.6% were hypermetabolic, 42.9% normal and 8.5% hypometabolic, while those were 22.5%, 58.5% and 19.0% in controls. Cancer patients had higher FO [(77.8 +/- 11.3) g/min vs. (67.1 +/- 12.1) g/min, P = 0.000], lower CO and npRQ [(68.7 +/- 10.5) g/min vs. (88.8 +/- 12.1) g/min, P = 0.000; 0.782 +/- 0.012 vs. 0.810 +/- 0.014, P = 0.000]. Cancer patients exhibited lower FM and FFM [(14.9 +/- 4.5) kg vs. (18.4 +/- 5.2) kg, P = 0.000; (44.4 +/- 7.2) kg vs. (46.1 +/- 8.1) kg, P = 0.008].
CONCLUSIONSElevated REE is common in cancer patients. Substrate metabolism of the cancer patients features in increased FO, decreased CO and npRQ, which is correlated with the elevated REE. FM and FFM loses in proportion in cancer patients.
Body Composition ; Carbohydrate Metabolism ; Energy Metabolism ; Fats ; metabolism ; Female ; Humans ; Male ; Neoplasms ; metabolism
6.Biomass carbohydrates assimilation and lipid accumulation by Mortierella isabellina.
Dahui XING ; Anlong PAN ; Donghua XUE ; Mingyu FANG ; Ranfeng GU
Chinese Journal of Biotechnology 2010;26(2):189-193
Biomass carbohydrates assimilation and lipid accumulation by Mortierella isabellina M2 strain were investigated. Corn fiber hydrolysate was specially studied. The results showed M. isabellina M2 strain achieved growth and lipid accumulation while glucose, xylose, mannose and arabinose were introduced as single carbon source, respectively. When M. isabellina M2 strain was cultivated on corn fiber hydrolysate with 6% sugars concentration, the biomass reached 18.2 g/L, the lipid content of dry mycelia was 45.7%, and the lipid yield achieved 8.3 g/L. It provided a promising perspective for microbial oils production with biomass hydrolysates.
Biomass
;
Carbohydrate Metabolism
;
Carbon
;
metabolism
;
Fermentation
;
Industrial Microbiology
;
methods
;
Lipids
;
biosynthesis
;
Mortierella
;
metabolism
;
Zea mays
;
metabolism
7.Xylanase carbohydrate binding module: recent developments.
Liangwei LIU ; Jie CHENG ; Hongge CHEN
Chinese Journal of Biotechnology 2010;26(3):290-296
Besides the catalytic domain, some xylanases contained a non-catalytic domain which is named as carbohydrate binding module (CBM). CBM can be used to improve their binding-ability to insoluble substrates. We illustrated the importance of CBM by reviewing the source of CBMs, type of families, features of binding to insoluble substrates, specific amino acids involved in substrate-binding, linker peptides connecting the catalytic domain, and the effect of CBMs on xylanase thermostability. CBM is important for xylanase to break down complicate carbohydrates. Perspectives on engineering xylanase activity according to the characteristics of CBMs were given.
Binding Sites
;
Carbohydrate Metabolism
;
Catalysis
;
Endo-1,4-beta Xylanases
;
metabolism
;
Multienzyme Complexes
;
chemistry
;
Substrate Specificity
8.Liver X receptor: crucial mediator in lipid and carbohydrate metabolism.
Yang LIU ; Yong-sheng CHANG ; Fu-de FANG
Acta Academiae Medicinae Sinicae 2007;29(3):430-435
Liver X receptors (LXRs) are members of the nuclear receptor superfamily and are activated by oxysterols and intermediates in the cholesterol synthetic pathway. The pivotal role of LXRs in the metabolic conversion of cholesterol to bile acids has been well established. Furthermore, insulin induces LXRa in hepatocytes, resulting in the suppression of key enzymes in gluconeogenesis, including phosphoenolpyruvate carboxykinase, glucose-6-phosphatase, and fructose-1, 6-bisphosphatase (FBPase). LXRs also play an important role in fatty acid metabolism by activating the sterol regulatory element-bing protein 1c gene (SREBP1c). This articles reviews the molecular mechanisms by which LXRs act to influence the lipid and carbohydrate metabolism.
Animals
;
Carbohydrate Metabolism
;
Humans
;
Lipid Metabolism
;
Liver X Receptors
;
Orphan Nuclear Receptors
;
physiology
9.Production of sugar syrup containing rare sugar using dual-enzyme coupled reaction system.
Wenjia HAN ; Yueming ZHU ; Wei BAI ; Ken IZUMORI ; Tongcun ZHANG ; Yuanxia SUN
Chinese Journal of Biotechnology 2014;30(1):90-97
Enzymatic conversion is very important to produce functional rare sugars, but the conversion rate of single enzymes is generally low. To increase the conversion rate, a dual-enzyme coupled reaction system was developed. Dual-enzyme coupled reaction system was constructed using D-psicose-3-epimerase (DPE) and L-rhamnose isomerase (L-RhI), and used to convert D-fructose to D-psicose and D-allose. The ratio of DPE and L-RhI was 1:10 (W/W), and the concentration of DPE was 0.05 mg/mL. The optimum temperature was 60 degrees C and pH was 9.0. When the concentration of D-fructose was 2%, the reaction reached its equilibrium after 10 h, and the yield of D-psicose and D-allose was 5.12 and 2.04 g/L, respectively. Using the dual-enzymes coupled system developed in the current study, we could obtain sugar syrup containing functional rare sugar from fructose-rich raw material, such as high fructose corn syrup.
Aldose-Ketose Isomerases
;
metabolism
;
Carbohydrate Epimerases
;
metabolism
;
Fructose
;
chemistry
;
Glucose
;
chemistry
;
Hydrogen-Ion Concentration
;
Temperature
10.Effect of viral infection on host cell metabolism: a review.
Yanmei LI ; Yunlin WEI ; Haiyan LI ; Xiuling JI
Chinese Journal of Biotechnology 2023;39(9):3566-3578
As specialized intracellular parasite, viruses have no ability to metabolize independently, so they completely depend on the metabolic mechanism of host cells. Viruses use the energy and precursors provided by the metabolic network of the host cells to drive their replication, assembly and release. Namely, viruses hijack the host cells metabolism to achieve their own replication and proliferation. In addition, viruses can also affect host cell metabolism by the expression of auxiliary metabolic genes (AMGs), affecting carbon, nitrogen, phosphorus, and sulfur cycles, and participate in microbial-driven biogeochemical cycling. This review summarizes the effect of viral infection on the host's core metabolic pathway from four aspects: cellular glucose metabolism, glutamine metabolism, fatty acid metabolism, and viral AMGs on host metabolism. It may facilitate in-depth understanding of virus-host interactions, and provide a theoretical basis for the treatment of viral diseases through metabolic intervention.
Humans
;
Metabolic Networks and Pathways
;
Virus Diseases
;
Carbohydrate Metabolism
;
Host Microbial Interactions
;
Lipid Metabolism