1.Inhibitory effects of butyl alcohol extract of Baitouweng decoction on virulence factors of Candida tropicalis.
Gui-ming YAN ; Meng-xiang ZHANG ; Dan XIA ; Ke-qiao LU ; Jing SHAO ; Tian-ming WANG ; Chang-zhong WANG
China Journal of Chinese Materia Medica 2015;40(12):2396-2402
OBJECTIVETo investigate the effects of butyl alcohol extract of baitouweng decoction (BAEB) on the fungal cell surface hydrophobicity (CSH), filamentation and biofilm formation of Candida tropicalis.
METHODGradual dilution method was used to determine the MIC. XTT assay was applied to determine the SMIC80. Time-Kill assay was employed to draw the Time-Kill curve. The water-hydrocarbon two-phase assay was used to measure the cell surface hydrophobicity. Scanning electron microscopy (SEM) was applied to observe the morphological changes of the biofilm. Confocal laser scanning microscopy (CLSM) was applied to determine the thickness of the biofilm. The quantification real-time PCR (qRT-PCR) was used to detect expression changes of releated genes (UME6, ALST3 and NRG1). result: The MICs of BAEB against C. tropicalis strains are determined as 64-128 mg x L(-1). The SMIC80 s of BAEB against the biofilm of Candida tropicalis strains are determined as 256-512 mg x L(-1). Time-Kill curve results indicate that BAEB has a promise fungicidal effect at 256 and 512 mg x L(-1). SEM results shows that 512 mg x L(-1) BAEB can inhibit the formation of C. tropicalis biofilm on Silicone catheter, and the morphology of biofilm is also affected by BAEB. The thickness of C. tropicalis biofilm is reduced by BAEB according to CLSM results. Furthermore, qRT-PCR results indicate that expression of UME6 and ALST3 are significantly down-regulated by BAEB 256,512 mg x L(-1), and NRG1 is not affected by BAEB.
CONCLUSIONBAEB inhibits effectively the CSH, filamentation and biofilm formation of VVC strains of C. tropicalis.
Antifungal Agents ; chemistry ; pharmacology ; Biofilms ; drug effects ; Candida tropicalis ; drug effects ; genetics ; physiology ; Candidiasis ; microbiology ; Drugs, Chinese Herbal ; chemistry ; pharmacology ; Fungal Proteins ; genetics ; metabolism ; Gene Expression Regulation, Fungal ; drug effects ; Humans ; Virulence Factors ; genetics ; metabolism
2.In vitro Evaluation of Antibiotic Lock Technique for the Treatment of Candida albicans, C. glabrata, and C. tropicalis Biofilms.
Kwan Soo KO ; Ji Young LEE ; Jae Hoon SONG ; Kyong Ran PECK
Journal of Korean Medical Science 2010;25(12):1722-1726
Candidaemia associated with intravascular catheter-associated infections is of great concern due to the resulting high morbidity and mortality. The antibiotic lock technique (ALT) was previously introduced to treat catheter-associated bacterial infections without removal of catheter. So far, the efficacy of ALT against Candida infections has not been rigorously evaluated. We investigated in vitro activity of ALT against Candida biofilms formed by C. albicans, C. glabrata, and C. tropicalis using five antifungal agents (caspofungin, amphotericin B, itraconazole, fluconazole, and voriconazole). The effectiveness of antifungal treatment was assayed by monitoring viable cell counts after exposure to 1 mg/mL solutions of each antibiotic. Fluconazole, itraconazole, and voriconazole eliminated detectable viability in the biofilms of all Candida species within 7, 10, and 14 days, respectively, while caspofungin and amphotericin B did not completely kill fungi in C. albicans and C. glabrata biofilms within 14 days. For C. tropicalis biofilm, caspofungin lock achieved eradication more rapidly than amphotericin B and three azoles. Our study suggests that azoles may be useful ALT agents in the treatment of catheter-related candidemia.
Amphotericin B/administration & dosage/pharmacology
;
Antifungal Agents/*administration & dosage/pharmacology/therapeutic use
;
Biofilms/*drug effects
;
Candida albicans/*drug effects/physiology
;
Candida glabrata/*drug effects/physiology
;
Candida tropicalis/*drug effects/physiology
;
Candidiasis/drug therapy
;
Catheter-Related Infections/drug therapy
;
Catheterization, Central Venous
;
Drug Administration Routes
;
Echinocandins/administration & dosage/pharmacology
;
Fluconazole/administration & dosage/pharmacology
;
Humans
;
Itraconazole/administration & dosage/pharmacology
;
Microbial Sensitivity Tests
;
Pyrimidines/administration & dosage/pharmacology
;
Triazoles/administration & dosage/pharmacology