1.Seroreactivities of proteinases of Candida albicans, C. tropicalis, and C. parapsilosis in sera from various Candida species-infected mice.
Kyoung Ho LEE ; Woon Seob SHIN ; Hyun Sook PARK ; Joo Young PARK ; Choon Myung KOH
Yonsei Medical Journal 1997;38(3):178-186
From the culture filtrates of C. albicans, C. tropicalis and C. parapsilosis, proteinases were purified using a series of chromatographic steps consisting of DEAE-Sepharose, Sephacryl S-200 and size-exclusion HPLC which removed contaminating mannoproteins and extraneous proteins. Anti-Candida proteinase antibodies in sera from mice infected with various Candida species were detected using ELISA for serodiagnosis of candidiasis. Three proteinases were blotted by homologous and heterologous anti-proteinase antisera on Western blot analysis. All sera from six Candida species-infected mice were reactive with proteinases of C. albicans, C. tropicalis, and C. parapsilosis, although C. glabrata, C. guilliermondii, and C. krusei did not secrete proteinase. The seroreactivities of proteinase with sera from mice infected with homologous C. albicans and C. tropicalis were higher than those with sera from heterologous Candida species-infected mice. These results suggest that three proteinases have at least one common epitope, but its application for diagnosis of candidiasis should be considered with limits of specificity.
Animal
;
Candida/genetics*
;
Candida/enzymology*
;
Candidiasis/enzymology*
;
Endopeptidases/analysis*
;
Female
;
Mice
;
Mice, Inbred ICR
;
Species Specificity
2.Yeast cell surface display and its application of enzymatic synthesis in non-aqueous phase.
Shuangyan HAN ; Huazhen LI ; Zi JIN ; Dengfeng HUANG ; Changqiong REN ; Ying LIN
Chinese Journal of Biotechnology 2009;25(12):1784-1788
Yeast surface display involves that the exogenous protein, which was fused with the yeast outer shell cell wall protein, was genetically anchored on the yeast cell surface. It has been widely used in expression and screening of functional protein. Here, we focused on the construction of lipase-displaying systems and its application in enzymatic biosynthesis, such as fatty acid methyl esters, short-chain flavour esters and sugar esters applications, and so on.
Candida
;
enzymology
;
genetics
;
Lipase
;
biosynthesis
;
genetics
;
Pichia
;
enzymology
;
genetics
;
Recombinant Proteins
;
biosynthesis
;
genetics
;
Solvents
;
Yeasts
;
enzymology
;
genetics
3.Relationship between Candida albicans producing proteinase (CAPP) and its environmental pH--comparison with a case of trichophyton mentagrophytes.
Ik Jun KO ; Chung Won KIM ; Won HOUH ; Ryoji TSUBOI ; Kazuko MATSUDA ; Hideoki OGAWA
Journal of Korean Medical Science 1987;2(2):97-101
Candida albicans produced a karatinolytic proteinase (KPase) or C. albicans producing proteinase (CAPP), a proposed new term for this enzyme, and Trichophyton mentagrophytes also produced KPase when cultivated in liquid medium containing human stratum corneum (HSC) as the nitrogen source, but were unable to do so when cultivated in sabouraud dextrose broth. Purified KPase from the culture supernatants of C. albicans had a molecular weight of 42,000 and an optimum pH at 4.0. The KPase was found to belong to the carboxyl proteinases group and its activity was strongly inhibited by pepstatin. Both fungi were able to grow by secreting KPase which digested HSC for nutrients. KPase from both fungi had high activity in each optimum pH, such as weakly acidic pH on C. albicans and neutral pH on T. mentagrophytes to adapt their surrounding environment by changing the environmental pH into their own optimum pH.
Candida albicans/*enzymology/growth & development
;
Culture Media
;
Endopeptidases/*physiology
;
Hydrogen-Ion Concentration
;
Molecular Weight
;
Trichophyton/*enzymology/growth & development
4.Immobilized lipase catalyzed synthesis of vitamin A plamitate.
Hongliang LI ; Jing HU ; Tianwei TAN
Chinese Journal of Biotechnology 2008;24(5):817-820
The synthesis of vitamin A plamitate in organic solvent with vitamin A acetate and ethyl palmitate with immobilized lipase from Candida sp. was studied. The influences of solvent, the molar ratio of substrates, the reaction temperature and time, and the water concentration were optimized and the best result was obtained by transesterification from 0.100 g vitamin A acetate and 0.433 g ethyl palmitic, at 30 degrees C, in 10 mL petroleum ether, containing 0.2% of water (V/V), with 1.1 g lipase. In these conditions, the yield of vitamin A palmitate reached 83% in 12 h. The immobilized lipase was reused about 5 batches.
Candida
;
enzymology
;
Catalysis
;
Enzymes, Immobilized
;
metabolism
;
Lipase
;
metabolism
;
Vitamin A
;
analogs & derivatives
;
chemical synthesis
5.Production of L-2-aminobutyric acid from L-threonine using a trienzyme cascade.
Yan FU ; Junxuan ZHANG ; Xuerong FU ; Yuchen XIE ; Hongyu REN ; Jia LIU ; Xiulai CHEN ; Liming LIU
Chinese Journal of Biotechnology 2020;36(4):782-791
L-2-aminobutyric acid (L-ABA) is an important chemical raw material and chiral pharmaceutical intermediate. The aim of this study was to develop an efficient method for L-ABA production from L-threonine using a trienzyme cascade route with Threonine deaminase (TD) from Escherichia. coli, Leucine dehydrogenase (LDH) from Bacillus thuringiensis and Formate dehydrogenase (FDH) from Candida boidinii. In order to simplify the production process, the activity ratio of TD, LDH and FDH was 1:1:0.2 after combining different activity ratios in the system in vitro. The above ratio was achieved in the recombinant strain E. coli 3FT+L. Moreover, the transformation conditions were optimized. Finally, we achieved L-ABA production of 68.5 g/L with a conversion rate of 99.0% for 12 h in a 30-L bioreactor by whole-cell catalyst. The environmentally safe and efficient process route represents a promising strategy for large-scale L-ABA production in the future.
Aminobutyrates
;
chemical synthesis
;
Bacillus thuringiensis
;
enzymology
;
Candida
;
enzymology
;
Escherichia coli
;
enzymology
;
Formate Dehydrogenases
;
metabolism
;
Leucine Dehydrogenase
;
metabolism
;
Threonine
;
metabolism
;
Threonine Dehydratase
;
metabolism
6.Immobilization of lipase by chemical modification of chitosan.
Wen-Jing HU ; Tian-Wei TAN ; Fang WANG ; Yang GAO
Chinese Journal of Biotechnology 2007;23(4):667-671
Lipase (EC3.1.1.3) from Candida sp. 99-125 was immobilized on chitosan by chemical covalence. Lipase was first immobilized to chitosan beads by activating its hydroxyl groups with carbodiimide followed by cross-linking more lipase to the amino groups with glutaraldehyde. In this article, different factors that influenced the immobilization were investigated, and the optimum conditions were ascertained. Comparative studies of organic solvent and thermal stability between free lipase and immobilized lipase were conducted. Immobilization enhanced the lipase stability against changes of temperature and organic solvent. Immobilization lipase can be reused in the synthesis system of palmitate hexadecyl. Operational stability tests indicated that the immobilized lipase occurs after 16 consecutive batches, the conversion rate remained 85%. Such results revealed good potential for recycling under esterification system.
Candida
;
enzymology
;
Carbodiimides
;
chemistry
;
Chitosan
;
chemistry
;
Cross-Linking Reagents
;
Enzyme Stability
;
Enzymes, Immobilized
;
Lipase
;
metabolism
;
Palmitates
;
chemistry
7.Construction and fermentation of a recombinant Candida glycerinogenes strain with high glycerol production.
Ailing LIU ; Zhiming RAO ; Zheng MA ; Bin ZHUGE ; Huiying FANG ; Jian ZHUGE
Chinese Journal of Biotechnology 2009;25(6):946-952
Candida glycerinogenes WL2002-5 (C.g) is an important industrial strain for glycerol production. To further improve glycerol production, we reconstructed a binary vector pCAM3300-zeocin-CgGPD1, introduced it to Agrobacterium tumefaciens LBA4404 by electroporation, and then transformed the T-DNA harboring the CgGPD1 to Candida glycerinogenes by Agrobacterium tumefaciens-mediated transformation (ATMT). After 96 h fermentation with glucose as the substrate, we screened a transformant named C.g-G8 with high glycerol production. Compared with the wild strain, the glucose consumption rate of C.g-G8 and the glycerol production were 12.97% and 18.06% higher, respectively. During the fermentation, the activity of glycerol-3-phosphate dehydrogenase of C.g-G8 was 27.55% higher than that of the wild strain. The recombinant Candida glycerinogenes with high glycerol production was successful constructed by ATMT method.
Agrobacterium tumefaciens
;
enzymology
;
genetics
;
Candida
;
genetics
;
metabolism
;
Electroporation
;
Fermentation
;
Glycerol
;
analysis
;
metabolism
;
Glycerolphosphate Dehydrogenase
;
genetics
;
Recombination, Genetic
;
Transformation, Genetic
8.Progress on biodiesel production with enzymatic catalysis in China.
Tianwei TAN ; Jike LU ; Kaili NIE ; Haixia ZHANG ; Li DENG ; Fang WANG
Chinese Journal of Biotechnology 2010;26(7):903-906
This paper reports the progress of biodiesel production with enzymatic catalysis in Beijing University of Chemical Technology, one of the leaders in biodiesel R & D in China, which includes screening of high-yield lipase production strains, optimization and scale-up of the lipase fermentation process, lipase immobilization, bioreactor development and scale-up, biodiesel separation and purification and the by-product glycerol utilization. Firstly, lipase fermentation was carried out at industrial scale with the 5 m3 stirred tank bioreactor, and the enzyme activity as high as 8 000 IU/mL was achieved by the species Candida sp. 99-125. Then, the lipase was purified and immobilized on textile membranes. Furthermore, biodiesel production was performed in the 5 m3 stirred tank bioreactor with an enzyme dosage as low as 0.42%, and biodiesel that met the German biodiesel standard was produced. And in the meantime, the byproduct glycerol was used for the production of 1,3-propanediol to partly offset the production cost of biodiesel, and 76.1 g/L 1,3-propanediol was obtained in 30 L fermentor with the species Klebsiella pneumoniae.
Biofuels
;
Bioreactors
;
Biotechnology
;
economics
;
methods
;
Candida
;
enzymology
;
Catalysis
;
China
;
Enzymes, Immobilized
;
metabolism
;
Esterification
;
Fermentation
;
Lipase
;
metabolism
;
Plant Oils
;
chemistry
9.Immobilization of lipase on macroporous resin and its application in synthesis of biodiesel in low aqueous media.
Yang GAO ; Tian-Wei TAN ; Kai-Li NIE ; Fang WANG
Chinese Journal of Biotechnology 2006;22(1):114-118
Lipase from Candida sp. 99-125 was immobilized by physical adsorption onto macroporous resins. The results showed that the nonpolar resin NKA was the best carrier used in low aqueous media. 98.98% of degree of immobilization can be achieved when the adsorption procedure was performed in the presence of heptane. The hydrolytic activity and the apparent activity recovery of lipase adsorbed on resin in heptane was 4.07 and 3.43 times higher than that of lipase adsorbed in sodium phosphate buffer, respectively. The catalytic properties of immobilized lipase for production of biodiesel in low aqueous media were studied. Immobilized lipase displayed the highest activity when the crude enzyme/resin weight ratio was 1.92:1 and the water content(water/oil weight ratio) was 15% at 40 degrees C under pH 7.4. As lipase was adsorbed on NKA in heptane to produce biodiesel, the batch conversion rate can reach 97.3% when a three-step methanolysis protocol was used. After 19 consecutive batches, the conversion rate remained 70.2%.
Candida
;
enzymology
;
Enzymes, Immobilized
;
metabolism
;
Gasoline
;
Lipase
;
isolation & purification
;
metabolism
;
Porosity
;
Resins, Synthetic
;
chemistry
;
Soybean Oil
;
chemistry
10.Metabolic engineering for improving ethanol fermentation of xylose by wild yeast.
Lingyan ZHANG ; Liang ZHANG ; Zhongyang DING ; Zhengxiang WANG ; Guiyang SHI
Chinese Journal of Biotechnology 2008;24(6):950-956
One yeast strain, which was isolated from 256 natural samples, was found to be able to utilize D-xylose effectively. On the basis of assimilation physiological and molecular biological tests, the yeast strain was identified as a strain of Candida tropicalis. Furthermore, metabolic engineering breeding strategy was applied to change the metabolic flux in order to increase ethanol productivity. In this study, the C. tropicalis was used as the host strain and the plasmid pYX212-XYL2, which was formerly constructed for over expression of XYL2 gene encoding xylitol dehydrogenase (XDH) from Pichia stipitis, was used as the backbone of the recombinant vector. A hygro gene was inserted into downstream position of XYL2 gene, meanwhile, the result plasmid pXY212-XYL2-Hygro transformed into C. tropicalis by electroporation. Thus, a recombinant yeast C. tropicalis XYL2-7 was obtained through hygromycin B resistance screening and its specific XDH activity was 0.5 u/mg protein, which was 3 times more than that of the parent strain. Additionally, the recombinant yeast was applied in the fermentation of xylose. Compared with the parent yeast, it was concluded that the xylitol yield in the broth decreased by 3 times, however, the ethanol yield increased by 5 times. The feasibility of ethanol production from xylose by C. tropicalis was firstly studied in this paper. These research results are helpful to advance the bioconversion of renewable resources (e. g. straw, wheat bran, and husk) to fuel ethanol.
Candida tropicalis
;
genetics
;
metabolism
;
D-Xylulose Reductase
;
genetics
;
metabolism
;
Electroporation
;
Ethanol
;
metabolism
;
Fermentation
;
Pichia
;
enzymology
;
genetics
;
Recombination, Genetic
;
Xylose
;
metabolism