1.Potential Value of Cancer-Associated Fibroblasts in Hematological Malignancies--Review.
Cheng-Yun PAN ; Na XU ; Xiao-Li LIU ; Xuan ZHOU ; Yan-Ju LI ; Ji-Shi WANG
Journal of Experimental Hematology 2018;26(6):1872-1875
Cancer-associated fibroblasts (CAF), as one of the most important components of tumor microenvironment, which plays important role in tumorigenesis, development, infiltration and metastasis of cancers. In a variety of solid tumors, CAF can even determine the fate of tumor cells. In view of its pivotal role in promoting tumor progression, CAF has recently become a therapeutic target for a variety of tumors. However, there are a few studies on CAF in hematological malignancies. Recent studies have found that the resistance, relapse of AML, MM, CLL and myelofibrosis of MPN closely relate with CAF, so targeting CAF can effectively enhance the killing effect of chemotherapy drugs on tumor cells, thus improve the efficacy, CAF is expected to become a new target for the treatment of hematological malignancies. This review summarizes recent advances in cancer-associated fibroblasts in hematological malignancies.
Cancer-Associated Fibroblasts
;
Fibroblasts
;
Hematologic Neoplasms
;
Humans
;
Neoplasm Recurrence, Local
;
Tumor Microenvironment
2.Research Progress of Cancer-associated Fibroblasts in Hematolo- gic Malignancies --Review.
Journal of Experimental Hematology 2023;31(6):1885-1889
Cancer-associated fibroblasts (CAF) are a key component of the tumor microenvironment, which can secrete a variety of cytokines, chemokines and growth factors, directly and indirectly support cancer cells, also alter the immune cellular environment by inhibiting the activity of immune effector cells and recruiting immunosuppressive cells, thereby allowing cancer cells to evade immune surveillance. CAF has been proven to be associated with the development, progression, and poor prognosis of solid tumors. However, the role of CAF in hematological malignancies is still unclear. This article reviews the research progress of CAF in hematological malignancies.
Humans
;
Cancer-Associated Fibroblasts/pathology*
;
Neoplasms/metabolism*
;
Hematologic Neoplasms/metabolism*
;
Tumor Microenvironment
;
Fibroblasts/pathology*
3.Progress on cancer associated fibroblasts in tumor immunoregulation.
Gaopeng LI ; Jia HE ; Qingqing WANG
Journal of Zhejiang University. Medical sciences 2018;47(5):558-563
Cancer associated fibroblasts (CAFs) are important components of the tumor microenvironment. Through secreting of multiple growth factors, cytokines and proteases, CAFs play a significant role in regulating the recruitment and function of various innate immune cells and adaptive immune cells in tumor microenvironment. In addition, extracellular matrix secreted by CAFs can also promote the formation of immunosuppression and hypoxia of tumor microenvironment. Here, we review the progress on CAFs in regulation of immune cells and tumor immunity.
Cancer-Associated Fibroblasts
;
Extracellular Matrix
;
immunology
;
Humans
;
Neoplasms
;
immunology
;
physiopathology
;
Tumor Microenvironment
;
immunology
4.Research Status of Tumor-associated Fibroblasts Regulating Immune Cells.
Guang MU ; Wenhao ZHANG ; Jingjing HUANG ; Zhipeng CHEN ; Jun WANG
Chinese Journal of Lung Cancer 2022;25(3):207-213
Cancer-associated fibroblasts (CAFs) and tumor-infiltrating immune cells are the most essential components of the tumor microenvironment (TME). They communicate with each other in tumor microenvironment and play a critical role in tumorigenesis and development. CAFs are very heterogeneous and different subtypes of CAFs display different functions. At the same time, it can contribute to the regulation of the function of tumor-infiltrating immune cells and eventually result in the carcinogenesis, tumor progression, invasion, metastasis and other biological behaviors of tumors by producting various growth factors and cytokines etc. Based on the current research results at home and abroad, this paper reviews the recent research progress on the regulation of CAFs on infiltrating immune cells in tumor microenvironment.
.
Cancer-Associated Fibroblasts/metabolism*
;
Carcinogenesis
;
Cell Transformation, Neoplastic/metabolism*
;
Humans
;
Lung Neoplasms/metabolism*
;
Tumor Microenvironment
5.Signal transducer and activator of transcription 3 and cancer associated fibroblasts jointly generate chemo-resistance and affect prognosis in epithelial ovarian cancer.
Ya Nan ZHANG ; Bin LI ; Yu Qing LI ; Shuang Huan LIU ; Hong Yi HOU ; Kun Yu WANG ; Miao AO ; Yan SONG
Chinese Journal of Obstetrics and Gynecology 2023;58(5):368-377
Objective: To investigate the mechanism of signal transducer and activator of transcription 3 (STAT3) and cancer associated fibroblasts (CAF) jointly generate chemo-resistance in epithelial-ovarian cancer and their effect on prognosis. Methods: A total of 119 patients with high-grade ovarian serous cancer who received surgery in Cancer Hospital of Chinese Academy of Medical Sciences from September 2009 to October 2017 were collected. The clinico-pathological data and follow-up data were complete. Multivariate Cox regression model was used to analyze the prognostic factors. Ovarian cancer tissue chips of patients in our hospital were prepared. EnVision two-step method immunohistochemistry was used to detect the protein expression levels of STAT3, the specific markers of CAF activation, fibroblast activating protein (FAP), and type Ⅰ collagen (COL1A1) secreted by CAF. The relationship between the expression of STAT3, FAP, COL1A1 protein and drug resistance and prognosis of ovarian cancer patients was analyzed, and the correlation between the expression of three proteins was analyzed. These results were verified through the gene expression and prognostic information of human ovarian cancer tissues collected in the GSE26712 dataset of gene expression omnibus (GEO) database. Results: (1) Multivariate Cox regression model analysis showed that chemotherapy resistance was an independent risk factor for overall survival (OS) of ovarian cancer (P<0.001). (2) The expression levels of STAT3, FAP, and COL1A1 proteins in chemotherapy resistant patients were significantly higher than those in chemotherapy sensitive patients (all P<0.05). Patients with high expression of STAT3, FAP, and COL1A1 had significantly shorter OS than those with low expression (all P<0.05). According to the human ovarian cancer GSE26712 dataset of GEO database, patients with high expression of STAT3, FAP, and COL1A1 also showed shorter OS than patients with low expression (all P<0.05), the verification results were consistent with the detection results of ovarian cancer patients in our hospital. (3) Correlation analysis showed that the protein level of STAT3 was positively correlated with FAP and COL1A1 in our hospital's ovarian cancer tissue chips (r=0.47, P<0.001; r=0.30, P=0.006), the analysis of GEO database GSE26712 dataset showed that the expression of STAT3 gene and FAP, COL1A1 gene were also significantly positively correlated (r=0.31, P<0.001; r=0.52, P<0.001). Conclusion: STAT3 and CAF could promote chemotherapy resistance of ovarian cancer and lead to poor prognosis.
Female
;
Humans
;
Cancer-Associated Fibroblasts/pathology*
;
Carcinoma, Ovarian Epithelial
;
Ovarian Neoplasms/pathology*
;
Prognosis
;
STAT3 Transcription Factor/metabolism*
;
Drug Resistance, Neoplasm
6.Identification of SULF1 as a Shared Gene in Idiopathic Pulmonary Fibrosis and Lung Adenocarcinoma.
Junyi WANG ; Lu LU ; Xiang HE ; Lijuan MA ; Tao CHEN ; Guoping LI ; Haijie YU
Chinese Journal of Lung Cancer 2023;26(9):669-683
BACKGROUND:
Idiopathic pulmonary fibrosis (IPF) is an idiopathic chronic, progressive interstitial lung disease with a diagnosed median survival of 3-5 years. IPF is associated with an increased risk of lung cancer. Therefore, exploring the shared pathogenic genes and molecular pathways between IPF and lung adenocarcinoma (LUAD) holds significant importance for the development of novel therapeutic approaches and personalized precision treatment strategies for IPF combined with lung cancer.
METHODS:
Bioinformatics analysis was conducted using publicly available gene expression datasets of IPF and LUAD from the Gene Expression Omnibus (GEO) database. Weighted gene co-expression network analysis was employed to identify common genes involved in the progression of both diseases, followed by functional enrichment analysis. Subsequently, additional datasets were used to pinpoint the core shared genes between the two diseases. The relationship between core shared genes and prognosis, as well as their expression patterns, clinical relevance, genetic characteristics, and immune-related functions in LUAD, were analyzed using The Cancer Genome Atlas (TCGA) database and single-cell RNA sequencing datasets. Finally, potential therapeutic drugs related to the identified genes were screened through drug databases.
RESULTS:
A total of 529 shared genes between IPF and LUAD were identified. Among them, SULF1 emerged as a core shared gene associated with poor prognosis. It exhibited significantly elevated expression levels in LUAD tissues, concomitant with high mutation rates, genomic heterogeneity, and an immunosuppressive microenvironment. Subsequent single-cell RNA-seq analysis revealed that the high expression of SULF1 primarily originated from tumor-associated fibroblasts. This study further demonstrated an association between SULF1 expression and tumor drug sensitivity, and it identified potential small-molecule drugs targeting SULF1 highly expressed fibroblasts.
CONCLUSIONS
This study identified a set of shared molecular pathways and core genes between IPF and LUAD. Notably, SULF1 may serve as a potential immune-related biomarker and therapeutic target for both diseases.
Humans
;
Lung Neoplasms/genetics*
;
Adenocarcinoma of Lung/genetics*
;
Idiopathic Pulmonary Fibrosis/genetics*
;
Adenocarcinoma
;
Cancer-Associated Fibroblasts
;
Prognosis
;
Tumor Microenvironment
;
Sulfotransferases
7.Colorectal cancer cells induce the formation of cancer-associated fibroblasts by activating the ERK signaling pathway in fibroblasts.
Ting DENG ; Boyu DU ; Xueyan XI
Journal of Southern Medical University 2023;43(6):943-951
OBJECTIVE:
To investigate the mechanism by which conditioned medium of colorectal cancer cells promotes the formation of cancer-associated fibroblasts (CAFs).
METHODS:
Normal human colorectal fibroblasts (CCD-18Co cells) in logarithmic growth phase were treated with the conditioned media of colorectal cancer HCT116 cells (HCT116-CM) or Caco-2 cells (Caco-2-CM) alone or in combination with 300 nmol/L ERK inhibitor SCH772984. The expression levels of CAFs-related molecular markers were detected in the treated cells with real-time quantitative PCR (RT- qPCR) and immunofluorescence assay, and the changes in cell proliferation, colony formation and migration were assessed with RTCA, colony formation and wound healing assays; Western blotting was performed to detect the activated signaling pathways in the fibroblasts and the changes in CAFs formation after blocking of the signaling pathway.
RESULTS:
HCT116-CM and Caco-2-CM significantly upregulated mRNA expression levels of CAFs markers (including α-SMA, FAP, FN and TGF-β) in CCD-18Co cells, and strongly promoted fibroblast transformation into CAFs (P < 0.05). The two conditioned media also promoted the proliferation, colony formation and migration of CCD-18Co cells (P < 0.05) and significantly increased the levels of α-SMA protein and ERK phosphorylation in the cells (P < 0.05). The ERK inhibitor SCH772984 obviously inhibited the expression of α-SMA and the transformation of CCD-18Co cells into CAFs induced by the conditioned medium of colorectal cancer cells (P < 0.05).
CONCLUSION
Colorectal cancer cells may induce the formation of colorectal CAFs by activating the ERK pathway in the fibroblasts.
Humans
;
Cancer-Associated Fibroblasts/metabolism*
;
Culture Media, Conditioned/pharmacology*
;
MAP Kinase Signaling System
;
Caco-2 Cells
;
Fibroblasts
;
Signal Transduction
;
Cell Proliferation
;
Cell Line, Tumor
;
Colorectal Neoplasms/genetics*
;
Cell Movement
8.Glycolysis reprogramming in cancer-associated fibroblasts promotes the growth of oral cancer through the lncRNA H19/miR-675-5p/PFKFB3 signaling pathway.
Jin YANG ; Xueke SHI ; Miao YANG ; Jingjing LUO ; Qinghong GAO ; Xiangjian WANG ; Yang WU ; Yuan TIAN ; Fanglong WU ; Hongmei ZHOU
International Journal of Oral Science 2021;13(1):12-12
As an important component of the tumor microenvironment, cancer-associated fibroblasts (CAFs) secrete energy metabolites to supply energy for tumor progression. Abnormal regulation of long noncoding RNAs (lncRNAs) is thought to contribute to glucose metabolism, but the role of lncRNAs in glycolysis in oral CAFs has not been systematically examined. In the present study, by using RNA sequencing and bioinformatics analysis, we analyzed the lncRNA/mRNA profiles of normal fibroblasts (NFs) derived from normal tissues and CAFs derived from patients with oral squamous cell carcinoma (OSCC). LncRNA H19 was identified as a key lncRNA in oral CAFs and was synchronously upregulated in both oral cancer cell lines and CAFs. Using small interfering RNA (siRNA) strategies, we determined that lncRNA H19 knockdown affected proliferation, migration, and glycolysis in oral CAFs. We found that knockdown of lncRNA H19 by siRNA suppressed the MAPK signaling pathway, 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 (PFKFB3) and miR-675-5p. Furthermore, the lncRNA H19/miR-675-5p/PFKFB3 axis was involved in promoting the glycolysis pathway in oral CAFs, as demonstrated by a luciferase reporter system assay and treatment with a miRNA-specific inhibitor. Our study presents a new way to understand glucose metabolism in oral CAFs, theoretically providing a novel biomarker for OSCC molecular diagnosis and a new target for antitumor therapy.
Cancer-Associated Fibroblasts/metabolism*
;
Carcinoma, Squamous Cell/genetics*
;
Cell Line, Tumor
;
Cell Proliferation
;
Gene Expression Regulation, Neoplastic
;
Glycolysis
;
Head and Neck Neoplasms
;
Humans
;
MicroRNAs/metabolism*
;
Mouth Neoplasms/genetics*
;
Phosphofructokinase-2/genetics*
;
RNA, Long Noncoding/genetics*
;
Signal Transduction
;
Tumor Microenvironment
9.Expression of CD10 in tumor-associated fibroblast of cancerized or recurrent colorectal adenomas.
Jiangjiang ZHENG ; Yin ZHU ; Changshui LI ; Yinya LI ; Qianqian NIE ; Ziling ZHU ; Hong DENG
Journal of Zhejiang University. Medical sciences 2016;45(4):335-341
To investigate the expression of CD10 in tumor-associated fibroblasts (TAF) in colorectal adenomas and its relation to cancerization and recurrence of adenoma.Tissue samples of low-grade adenoma (=50), high-grade adenoma (=50) and colorectal adenocarcinoma (=50) were collected, and tissue samples at the distal margin of corresponding colorectal lesions were taken as controls. The expression of CD10 in the stromal TAFs, and the expressions of β-catenin, Ki-67, p53 and CyclinD1 in tumor cells were detected by immunohistochemistry (Envision). The correlation of CD10 expression in stromal TAFs with the expressions of β-catenin, Ki-67, p53 and CyclinD1 in tumor cells was analyzed by Spearmen. One hundred samples of low-grade colorectal adenoma were collected, including 57 non-recurrent cases and 43 recurrent cases (16 cases of recurrent adenoma and 27 cases of recurrent adenocarcinoma); the expression of stromal TAF CD10 were determined and compared among groups.There was no TAF in normal colorectal mucosa. The expression rates of TAF CD10 in low-grade adenoma, high-grade adenoma and colorectal adenocarcinoma were 22%, 50% and 78%, respectively (all<0.05). The expression of Ki-67 and β-catenin in low-grade adenoma, high-grade adenoma, colorectal adenocarcinoma was on a rising trend (all<0.01). The expression of CyclinD1 in high-grade adenoma was higher than that in colorectal adenocarcinoma and low-grade adenoma (all>0.05). The expression of p53 in colorectal adenocarcinoma and high-grade adenoma was higher than that in low grade adenoma (all<0.01). The expression of TAF CD10 was correlated with the expression of p53, Ki-67 and β-catenin-nucleus(=0.264、0.307、0.320, all<0.01),but not correlated with CyclinD1 and β-catenin-membrane (=0.012、-0.073, all>0.05). The TAF CD10 level was significantly higher in low-grade adenoma with recurrence than that in those without recurrence (<0.05).The expression of CD10 in recurrent colorectal adenocarcinoma was higher than that in recurrent adenoma (<0.05).The expression of TAF CD10 is increased gradually in the process of adenoma-cancer, indicating that it may play an important role in the canceration of adenoma. Adenomas with high expression of CD10 TAF are likely to be recurrent and cancerized, and detection of TAF CD10 combined with p53, Ki-67 and β-catenin may be of value in predicting canceration or recurrence of colorectal adenoma.
Adenocarcinoma
;
chemistry
;
genetics
;
Adenoma
;
chemistry
;
genetics
;
Biomarkers, Tumor
;
analysis
;
Cancer-Associated Fibroblasts
;
chemistry
;
Carcinogenesis
;
chemistry
;
Colorectal Neoplasms
;
chemistry
;
genetics
;
Cyclin D1
;
analysis
;
Disease Progression
;
Humans
;
Immunohistochemistry
;
Ki-67 Antigen
;
analysis
;
Neoplasm Grading
;
Neoplasm Recurrence, Local
;
chemistry
;
Neprilysin
;
analysis
;
Predictive Value of Tests
;
Tumor Suppressor Protein p53
;
analysis
;
beta Catenin
;
analysis