1.Research progress on renal calculus associate with inborn error of metabolism.
Yuanming SONG ; Changyong ZHAO ; Daobing LI
Journal of Zhejiang University. Medical sciences 2023;52(2):169-177
Renal calculus is a common disease with complex etiology and high recurrence rate. Recent studies have revealed that gene mutations may lead to metabolic defects which are associated with the formation of renal calculus, and single gene mutation is involved in relative high proportion of renal calculus. Gene mutations cause changes in enzyme function, metabolic pathway, ion transport, and receptor sensitivity, causing defects in oxalic acid metabolism, cystine metabolism, calcium ion metabolism, or purine metabolism, which may lead to the formation of renal calculus. The hereditary conditions associated with renal calculus include primary hyperoxaluria, cystinuria, Dent disease, familial hypomagnesemia with hypercalciuria and nephrocalcinosis, Bartter syndrome, primary distal renal tubular acidosis, infant hypercalcemia, hereditary hypophosphatemic rickets with hypercalciuria, adenine phosphoribosyltransferase deficiency, hypoxanthine-guanine phosphoribosyltransferase deficiency, and hereditary xanthinuria. This article reviews the research progress on renal calculus associated with inborn error of metabolism, to provide reference for early screening, diagnosis, treatment, prevention and recurrence of renal calculus.
Infant
;
Humans
;
Hypercalciuria/genetics*
;
Kidney Calculi/genetics*
;
Urolithiasis/genetics*
;
Nephrocalcinosis/genetics*
;
Metabolism, Inborn Errors/genetics*
2.Genes associated with testicular germ cell tumors and testicular dysgenesis in patients with testicular microlithiasis.
Ilya S DANTSEV ; Evgeniy V IVKIN ; Aleksey A TRYAKIN ; Dmitriy N GODLEVSKI ; Oleg Yu LATYSHEV ; Victoriya V RUDENKO ; Dmitry S MIKHAYLENKO ; Vyacheslav B CHERNYKH ; Elena A VOLODKO ; Aleksey B OKULOV ; Oleg B LORAN ; Marina V NEMTSOVA
Asian Journal of Andrology 2018;20(6):593-599
Testicular microlithiasis (TM) is one of the symptoms of testicular dysgenesis syndrome (TDS). TM is particularly interesting as an informative marker of testicular germ cell tumors (TGCTs). KIT ligand gene (KITLG), BCL2 antagonist/killer 1 (BAK1), and sprouty RTK signaling antagonist 4 (SPRY4) genes are associated with a high risk of TGCTs, whereas bone morphogenetic protein 7 gene (BMP7), transforming growth factor beta receptor 3 gene (TGFBR3), and homeobox D cluster genes (HOXD) are related to TDS. Using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) analysis, we investigated allele and genotype frequencies for KITLG (rs995030, rs1508595), SPRY4 (rs4624820, rs6897876), BAK1 (rs210138), BMP7 (rs388286), TGFBR3 (rs12082710), and HOXD (rs17198432) in 142 TGCT patients, 137 TM patients, and 153 fertile men (control group). We found significant differences in the KITLG GG_rs995030 genotype in TM (P = 0.01) and TGCT patients (P = 0.0005) compared with the control. We also revealed strong associations between KITLG_rs1508595 and TM (G allele, P = 0.003; GG genotype, P = 0.01) and between KITLG_rs1508595 and TGCTs (G allele, P = 0.0001; GG genotype, P = 0.0007). Moreover, there was a significant difference in BMP7_rs388286 between the TGCT group and the control (T allele, P = 0.00004; TT genotype, P = 0.00006) and between the TM group and the control (T allele, P = 0.04). HOXD also demonstrated a strong association with TGCTs (rs17198432 A allele, P = 0.0001; AA genotype, P = 0.001). Furthermore, significant differences were found between the TGCT group and the control in the BAK1_rs210138 G allele (P = 0.03) and the GG genotype (P = 0.01). KITLG and BMP7 genes, associated with the development of TGCTs, may also be related to TM. In summary, the KITLG GG_rs995030, GG_rs1508595, BMP7 TT_rs388286, HOXD AA_rs17198432, and BAK1 GG_rs210138 genotypes were associated with a high risk of TGCT development.
Adolescent
;
Adult
;
Calculi/genetics*
;
Case-Control Studies
;
Cohort Studies
;
DNA/genetics*
;
Gene Frequency
;
Genetic Predisposition to Disease
;
Gonadal Dysgenesis/genetics*
;
Humans
;
Male
;
Neoplasms, Germ Cell and Embryonal/genetics*
;
Polymerase Chain Reaction
;
Testicular Diseases/genetics*
;
Testicular Neoplasms/genetics*
;
Ultrasonography
;
Young Adult
3.A Case of Exercise-induced Acute Renal Failure with G774A Mutation in SCL22A12 Causing Renal Hypouricemia.
Journal of Korean Medical Science 2011;26(9):1238-1240
Acute renal failure with severe loin pain which develops after anaerobic exercise is rare. One of predisposing factors of exercise-induced acute renal failure is renal hypouricemia. Idiopathic renal hypouricemia is a genetic disorder characterized by hypouricemia with abnormally high renal tubular uric acid excretion. The mutation in SCL22A12 gene which encodes renal uric acid transporter, URAT1, is the known major cause of this disorder. We here described a 25-yr-old man showing idiopathic renal hypouricemia with G774A mutation in SCL22A12 who presented exercise-induced acute renal failure. There have been a few reports of mutational analysis in Korean idiopathic renal hypouricemia without acute renal failure. This is the first report of genetically diagnosed idiopathic renal hypouricemia with exercise-induced acute renal failure in Korea.
Acute Kidney Injury/*diagnosis/genetics
;
Adult
;
Amino Acid Substitution
;
DNA Mutational Analysis
;
Exercise
;
Exons
;
Humans
;
Male
;
Mutation
;
Organic Anion Transporters/*genetics
;
Organic Cation Transport Proteins/*genetics
;
Renal Tubular Transport, Inborn Errors/etiology/*genetics
;
Urinary Calculi/etiology/*genetics
4.FKBP-12 Exhibits an Inhibitory Activity on Calcium Oxalate Crystal Growth in Vitro.
In Sook HAN ; Yasushi NAKAGAWA ; Jong Wook PARK ; Min Ho SUH ; Sung IL SUH ; Song Woo SHIN ; Su Yul AHN ; Byung Kil CHOE
Journal of Korean Medical Science 2002;17(1):41-48
Urolithiasis and calcium oxalate crystal deposition diseases are still significant medical problems. In the course of nephrocalcin cDNA cloning, we have identified FKBP-12 as an inhibitory molecule of calcium oxalate crystal growth. lambdagt 11 cDNA libraries were constructed from renal carcinoma tissues and screened for nephrocalcin cDNA clones using anti-nephrocalcin antibody as a probe. Clones expressing recombinant proteins, which appeared to be antigenically cross-reactive to nephrocalcin, were isolated and their DNA sequences and inhibitory activities on the calcium oxalate crystal growth were determined. One of the clone lambdagt 11 #31-1 had a partial fragment (80 bp) of FKBP-12 cDNA as an insert. Therefore, a full-length FKBP-12 cDNA was PCR-cloned from the lambdagt 11 renal carcinoma cDNA library and was subcloned into an expression vector. The resultant recombinant FKBP-12 exhibited an inhibitory activity on the calcium oxalate crystal growth (Kd=10(-7) M). Physiological effect of the extracellular FKBP-12 was investigated in terms of macrophage activation and proinflammatory cytokine gene induction. Extracellular FKBP-12 failed to activate macrophages even at high concentrations. FKBP-12 seems an anti-stone molecule for the oxalate crystal deposition disease and recurrent stone diseases.
Animals
;
Base Sequence
;
Calcium Oxalate/*antagonists & inhibitors
;
Carcinoma, Renal Cell
;
Crystallization
;
DNA, Complementary
;
Extracellular Space
;
Glycoproteins/genetics
;
Humans
;
Kidney Calculi/*prevention & control
;
Kidney Neoplasms
;
Male
;
Mice
;
Mice, Inbred ICR
;
Molecular Sequence Data
;
Recombinant Fusion Proteins/genetics/metabolism
;
Tacrolimus Binding Protein 1A/genetics/*metabolism