1.The role of mitochondria-associated endoplasmic reticulum membranes in age-related cardiovascular diseases.
Yu ZHANG ; Xin-Yi ZHAO ; Wen-Jun XIE ; Yi ZHANG
Acta Physiologica Sinica 2023;75(6):799-816
		                        		
		                        			
		                        			Mitochondria-associated endoplasmic reticulum membranes (MAMs) are the physical connection sites between mitochondria and endoplasmic reticulum (ER). As the compartments controlling substance and information communications between ER and mitochondria, MAMs were involved in the regulation of various pathophysiological processes, such as calcium homeostasis, mitochondrial morphology and function, lipid metabolism and autophagy. In the past decades, accumulating lines of evidence have revealed the pivotal role of MAMs in diverse cardiovascular diseases (CVD). Aging is one of the major independent risk factors for CVD, which causes progressive degeneration of the cardiovascular system, leading to increased morbidity and mortality of CVD. This review aims to summarize the research progress of MAMs in age-related CVD, and explore new targets for its prevention and treatment.
		                        		
		                        		
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Mitochondrial Membranes
		                        			;
		                        		
		                        			Cardiovascular Diseases/metabolism*
		                        			;
		                        		
		                        			Calcium Signaling/physiology*
		                        			;
		                        		
		                        			Mitochondria/physiology*
		                        			;
		                        		
		                        			Endoplasmic Reticulum/metabolism*
		                        			
		                        		
		                        	
2.Rictor regulates mitochondrial calcium signaling in mouse embryo stem cell-derived cardiomyocytes.
Ying SHAO ; Jiadan WANG ; Danyan ZHU
Journal of Zhejiang University. Medical sciences 2019;48(1):65-74
		                        		
		                        			OBJECTIVE:
		                        			To explore the expression, localization and regulatory effect on mitochondrial calcium signaling of Rictor in embryonic stem cell-derived cardiomyocytes (ESC-CMs).
		                        		
		                        			METHODS:
		                        			Classical embryonic stem cell cardiomyogenesis model was used for differentiation of mouse embryonic stem cells into cardiomyocytes. The location of Rictor in ESC-CMs was investigated by immunofluorescence and Western blot. The expression of Rictor in mouse embryonic stem cells was interfered with lentiviral technology, then the superposition of mitochondria and endoplasmic reticulum (ER) in ESC-CMs was detected with immunofluorescence method; the cellular ultrastructure of ESC-CMs was observed by transmission electron microscope; the mitochondrial calcium transients of ESC-CMs was detected by living cell workstation;immunoprecipitation was used to detect the interaction between 1,5,5-trisphosphate receptor (IP3 receptor, IP3R), glucose-regulated protein 75 (Grp75) and voltage-dependent anion channel 1 (VDAC1) in mitochondrial outer membrane; the expression of mitochondrial fusion protein (mitonusin-2, Mfn2) was detected by Western blot.
		                        		
		                        			RESULTS:
		                        			Rictor was mainly localized in the endoplasmic reticulum and mitochondrial-endoplasmic reticulum membrane (MAM) in ESC-CMs. Immunofluorescence results showed that Rictor was highly overlapped with ER and mitochondria in ESC-CMs. After mitochondrial and ER were labeled with Mito-Tracker Red and ER-Tracker Green, it was demonstrated that the mitochondria of the myocardial cells in the Rictor group were scattered, and the superimposition rate of mitochondria and ER was lower than that of the negative control group (<0.01). The MAM structures were decreased in ESC-CMs after knockdown of Rictor. The results of the living cell workstation showed that the amplitude of mitochondrial calcium transients by ATP stimulation in ESC-CMs was decreased after knockdown of Rictor (<0.01). The results of co-immunoprecipitation showed that the interaction between IP3R, Grp75 and VDAC1 in the MAM structure of the cardiomyocytes in the Rictor group was significantly attenuated (<0.01); the results of Western blot showed that the expression of Mfn2 protein was significantly decreased (<0.01).
		                        		
		                        			CONCLUSIONS
		                        			Using lentiviral technology to interfere Rictor expression in mouse embryonic stem cells, the release of calcium from the endoplasmic reticulum to mitochondria in ESC-CMs decreases, which may be affected by reducing the interaction of IP3R, Grp75, VDAC1 and decreasing the expression of Mfn2, leading to the damage of MAM structure.
		                        		
		                        		
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Calcium Signaling
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			Gene Expression Regulation
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			Gene Knockdown Techniques
		                        			;
		                        		
		                        			Mice
		                        			;
		                        		
		                        			Mitochondria
		                        			;
		                        		
		                        			physiology
		                        			;
		                        		
		                        			Mouse Embryonic Stem Cells
		                        			;
		                        		
		                        			Myocytes, Cardiac
		                        			;
		                        		
		                        			physiology
		                        			;
		                        		
		                        			Protein Transport
		                        			;
		                        		
		                        			Rapamycin-Insensitive Companion of mTOR Protein
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			metabolism
		                        			
		                        		
		                        	
3.Next-Generation Tools to Study Autonomic Regulation In Vivo.
Snigdha MUKERJEE ; Eric LAZARTIGUES
Neuroscience Bulletin 2019;35(1):113-123
		                        		
		                        			
		                        			The recent development of tools to decipher the intricacies of neural networks has improved our understanding of brain function. Optogenetics allows one to assess the direct outcome of activating a genetically-distinct population of neurons. Neurons are tagged with light-sensitive channels followed by photo-activation with an appropriate wavelength of light to functionally activate or silence them, resulting in quantifiable changes in the periphery. Capturing and manipulating activated neuron ensembles, is a recently-designed technique to permanently label activated neurons responsible for a physiological function and manipulate them. On the other hand, neurons can be transfected with genetically-encoded Ca indicators to capture the interplay between them that modulates autonomic end-points or somatic behavior. These techniques work with millisecond temporal precision. In addition, neurons can be manipulated chronically to simulate physiological aberrations by transfecting designer G-protein-coupled receptors exclusively activated by designer drugs. In this review, we elaborate on the fundamental concepts and applications of these techniques in research.
		                        		
		                        		
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Autonomic Pathways
		                        			;
		                        		
		                        			physiology
		                        			;
		                        		
		                        			Calcium Signaling
		                        			;
		                        		
		                        			physiology
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Nerve Net
		                        			;
		                        		
		                        			physiology
		                        			;
		                        		
		                        			Neurons
		                        			;
		                        		
		                        			physiology
		                        			;
		                        		
		                        			Optogenetics
		                        			;
		                        		
		                        			methods
		                        			;
		                        		
		                        			Receptors, G-Protein-Coupled
		                        			;
		                        		
		                        			physiology
		                        			
		                        		
		                        	
4.Investigation of Pain Mechanisms by Calcium Imaging Approaches.
Michael ANDERSON ; Qin ZHENG ; Xinzhong DONG
Neuroscience Bulletin 2018;34(1):194-199
		                        		
		                        			
		                        			Due to the complex circuitry and plethora of cell types involved in somatosensation, it is becoming increasingly important to be able to observe cellular activity at the population level. In addition, since cells rely on an intricate variety of extracellular factors, it is important to strive to maintain the physiological environment. Many electrophysiological techniques require the implementation of artificially-produced physiological environments and it can be difficult to assess the activity of many cells simultaneously. Moreover, imaging Ca transients using Ca-sensitive dyes often requires in vitro preparations or in vivo injections, which can lead to variable expression levels. With the development of more sensitive genetically-encoded Ca indicators (GECIs) it is now possible to observe changes in Ca transients in large populations of cells at the same time. Recently, groups have used a GECI called GCaMP to address fundamental questions in somatosensation. Researchers can now induce GCaMP expression in the mouse genome using viral or gene knock-in approaches and observe the activity of populations of cells in the pain pathway such as dorsal root ganglia (DRG), spinal neurons, or glia. This approach can be used in vivo and thus maintains the organism's biological integrity. The implementation of GCaMP imaging has led to many advances in our understanding of somatosensation. Here, we review the current findings in pain research using GCaMP imaging as well as discussing potential methodological considerations.
		                        		
		                        		
		                        		
		                        			Afferent Pathways
		                        			;
		                        		
		                        			physiology
		                        			;
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Calcium
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Calcium Signaling
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			Ganglia, Spinal
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Pain
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			pathology
		                        			
		                        		
		                        	
5.Tacrolimus inhibits vasoconstriction by increasing Ca(2+) sparks in rat aorta.
Yu-fang CHEN ; Chen WANG ; Rui ZHANG ; Huan WANG ; Rong MA ; Si JIN ; Ji-zhou XIANG ; Qiang TANG
Journal of Huazhong University of Science and Technology (Medical Sciences) 2016;36(1):8-13
		                        		
		                        			
		                        			The present study attempted to test a novel hypothesis that Ca(2+) sparks play an important role in arterial relaxation induced by tacrolimus. Recorded with confocal laser scanning microscopy, tacrolimus (10 µmol/L) increased the frequency of Ca(2+) sparks, which could be reversed by ryanodine (10 µmol/L). Electrophysiological experiments revealed that tacrolimus (10 µmol/L) increased the large-conductance Ca(2+)-activated K(+) currents (BKCa) in rat aortic vascular smooth muscle cells (AVSMCs), which could be blocked by ryanodine (10 µmol/L). Furthermore, tacrolimus (10 and 50 µmol/L) reduced the contractile force induced by norepinephrine (NE) or KCl in aortic vascular smooth muscle in a concentration-dependent manner, which could be also significantly attenuated by iberiotoxin (100 nmol/L) and ryanodine (10 µmol/L) respectively. In conclusion, tacrolimus could indirectly activate BKCa currents by increasing Ca(2+) sparks released from ryanodine receptors, which inhibited the NE- or KCl-induced contraction in rat aorta.
		                        		
		                        		
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Aorta
		                        			;
		                        		
		                        			cytology
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			physiology
		                        			;
		                        		
		                        			Calcium Signaling
		                        			;
		                        		
		                        			Cells, Cultured
		                        			;
		                        		
		                        			Large-Conductance Calcium-Activated Potassium Channels
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Male
		                        			;
		                        		
		                        			Muscle, Smooth, Vascular
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			physiology
		                        			;
		                        		
		                        			Myocytes, Smooth Muscle
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Norepinephrine
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			Rats
		                        			;
		                        		
		                        			Rats, Sprague-Dawley
		                        			;
		                        		
		                        			Ryanodine
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			Tacrolimus
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			Vasoconstriction
		                        			
		                        		
		                        	
6.Genome-wide association study knowledge-driven pathway analysis of alcohol dependence implicates the calcium signaling pathway.
Danni LI ; Jinming LI ; Yanfang GUO
Chinese Medical Journal 2014;127(12):2229-2235
BACKGROUNDAlcohol dependence (AD) is a serious and common public health problem. The identification of genes that contribute to the AD variation will improve our understanding of the genetic mechanism underlying this complex disease. Previous genome-wide association studies (GWAS) and candidate gene genetic association studies identified individual genes as candidates for alcohol phenotypes, but efforts to generate an integrated view of accumulative genetic variants and pathways under alcohol drinking are lacking.
METHODSWe applied enrichment gene set analysis to existing genetic association results to identify pertinent pathways to AD in this study. A total of 1 438 SNPs (P < 1.0 × 10(-3)) associated to alcohol drinking related traits have been collected from 31 studies (10 candidate gene association studies, 19 GWAS of SNPs, and 2 GWAS of copy number variants).
RESULTSAmong all of the KEGG pathways, the calcium signaling pathway (hsa04020) showed the most significant enrichment of associations (21 genes) to alcohol consumption phenotypes (P = 5.4 × 10(-5)). Furthermore, the calcium signaling pathway is the only pathway that turned out to be significant after multiple test adjustments, achieving Bonferroni P value of 0.8 × 10(-3) and FDR value of 0.6 × 10(-2), respectively. Interestingly, the calcium signaling pathway was previously found to be essential to regulate brain function, and genes in this pathway link to a depressive effect of alcohol consumption on the body.
CONCLUSIONSOur findings, together with previous biological evidence, suggest the importance of gene polymorphisms of calcium signaling pathway to AD susceptibility. Still, further investigations are warranted to uncover the role of this pathway in AD and related traits.
Alcoholism ; genetics ; Calcium Signaling ; genetics ; physiology ; Genetic Predisposition to Disease ; genetics ; Genome-Wide Association Study ; methods ; Humans ; Polymorphism, Single Nucleotide ; genetics
7.Atorvastatin induces autophagy of mesenchymal stem cells under hypoxia and serum deprivation conditions by activating the mitogen-activated protein kinase/extracellular signal-regulated kinase pathway.
Na LI ; Qian ZHANG ; Haiyan QIAN ; Chen JIN ; Yuejin YANG ; Runlin GAO
Chinese Medical Journal 2014;127(6):1046-1051
BACKGROUNDThe survival ratio of implanted mesenchymal stem cells (MSCs) in the infarcted myocardium is low. Autophagy is a complex "self-eating" process and can be utilized for cell survival. We have found that atorvastatin (ATV) can effectively activate autophagy to enhance MSCs survival during hypoxia and serum deprivation (H/SD). The mitogen-activated protein kinase/extracellular signal-regulated kinase (MEK/ERK) pathway is a non-canonical autophagy pathway. We hypothesized that the MEK/ERK pathway mediated ATV-induced autophagy of MSCs under H/SD.
METHODSMSCs were pretreated with ATV (0.01-10 µmol/L) under H/SD for three hours. For inhibitor studies, the cells were pre-incubated with the MEK1/2 inhibitor U0126. Cell autophagy was assessed by acidic vesicular organelles (AVO)-positive cells using flow cytometry, autophagy related protein using Western blotting and autophagosome using transmission electron microscopy.
RESULTSAutophagy was elevated in the H/SD group compared with the normal group. ATV further enhanced the autophagic activity as well as the phosphorylation of ERK1/2 evidenced by more AVO-positive cells ((8.63 ± 0.63)% vs. (5.77 ± 0.44)%, P < 0.05), higher LC3-II/LC3-I ratio (4.36 ± 0.31 vs. 2.52 ± 0.18, P < 0.05) and more autophagosomes. And treatment with U0126 downregulated the phosphorylation of ERK1/2 and attenuated ATV-induced autophagy.
CONCLUSIONThe MEK/ERK pathway participates in ATV-induced autophagy in MSCs under H/SD, and modulation of the pathway could be a novel strategy to improve MSCs survival.
Animals ; Atorvastatin Calcium ; Autophagy ; drug effects ; Cell Hypoxia ; physiology ; Cells, Cultured ; Flow Cytometry ; Heptanoic Acids ; pharmacology ; MAP Kinase Signaling System ; drug effects ; Male ; Mesenchymal Stromal Cells ; cytology ; drug effects ; ultrastructure ; Microscopy, Electron, Transmission ; Pyrroles ; pharmacology ; Rats
8.Effect of TRPV1 channel on proliferation and apoptosis of airway smooth muscle cells of rats.
Li-min ZHAO ; Hong-yan KUANG ; Luo-xian ZHANG ; Ji-zhen WU ; Xian-liang CHEN ; Xiao-yu ZHANG ; Li-jun MA
Journal of Huazhong University of Science and Technology (Medical Sciences) 2014;34(4):504-509
		                        		
		                        			
		                        			Airway remodeling is an important pathological feature of asthma and the basis of severe asthma. Proliferation of airway smooth muscle cells (ASMCs) is a major contributor to airway remodeling. As an important Ca(2+) channel, transient receptor potential vanilloid 1 (TRPV1) plays the key role in the cell pathological and physiological processes. This study investigated the expression and activity of TRPV1 channel, and further clarified the effect of TRPV1 channel on the ASMCs proliferation and apoptosis in order to provide the scientific basis to treat asthmatic airway remodeling in clinical practice. Immunofluorescence staining and reverse transcription polymerase chain reaction (RT-PCR) were used to detect the expression of TRPV1 in rat ASMCs. Intracellular Ca(2+) was detected using the single cell confocal fluorescence microscopy measurement loaded with Fluo-4/AM. The cell cycles were observed by flow cytometry. MTT assay and Hoechst 33258 staining were used to detect the proliferation and apoptosis of ASMCs in rats respectively. The data showed that: (1) TRPV1 channel was present in rat ASMCs. (2) TRPV1 channel agonist, capsaicin, increased the Ca(2+) influx in a concentration-dependent manner (EC50=284.3±58 nmol/L). TRPV1 channel antagonist, capsazepine, inhibited Ca(2+) influx in rat ASMCs. (3) Capsaicin significantly increased the percentage of S+G2M ASMCs and the absorbance of MTT assay. Capsazepine had the opposite effect. (4) Capsaicin significantly inhibited the apoptosis, whereas capsazepine had the opposite effect. These results suggest that TRPV1 is present and mediates Ca(2+) influx in rat ASMCs. TRPV1 activity stimulates proliferation of ASMCs in rats.
		                        		
		                        		
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Antipruritics
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			Apoptosis
		                        			;
		                        		
		                        			physiology
		                        			;
		                        		
		                        			Bronchi
		                        			;
		                        		
		                        			cytology
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Calcium Signaling
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			physiology
		                        			;
		                        		
		                        			Capsaicin
		                        			;
		                        		
		                        			analogs & derivatives
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			Cell Proliferation
		                        			;
		                        		
		                        			Myocytes, Smooth Muscle
		                        			;
		                        		
		                        			cytology
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Rats
		                        			;
		                        		
		                        			Rats, Sprague-Dawley
		                        			;
		                        		
		                        			TRPV Cation Channels
		                        			;
		                        		
		                        			antagonists & inhibitors
		                        			;
		                        		
		                        			metabolism
		                        			
		                        		
		                        	
9.Involvement of store-operated calcium channels and receptor-operated calcium channels in Ca(2+)-sensing receptor-evoked extracellular Ca(2+) influx and NO generation in human umbilical vein endothelial cells.
Hui ZHAO ; Xiao LIANG ; Hua ZHONG ; Chun-Jun ZHANG ; Fang HE
Acta Physiologica Sinica 2013;65(5):553-561
		                        		
		                        			
		                        			This paper aims to investigate the effect of store-operated calcium channels (SOC) and receptor-operated calcium channels (ROC) on Ca(2+)-sensing receptor (CaR)-induced extracellular Ca(2+) influx and nitric oxide (NO) generation in human umbilical vein endothelial cells (HUVEC). SOC blocker, non-selective cation channel blocker, ROC agonist and ROC blocker were used separately and combined. Intracellular Ca(2+) concentration ([Ca(2+)]i) was measured by Fura-2/AM loading. The activity of endothelial nitric oxide synthase (eNOS) and the production of NO were determined by the DAF-FM diacetate (DAF-FM DA). The results showed that increases of [Ca(2+)]i, eNOS activity and NO generation induced by CaR agonist Spermine were all reduced after single blocking the SOC or ROC, respectively (P < 0.05). ROC agonist can partially abolish the ROC blocker's effect (P < 0.05). The above mentioned effects evoked by CaR agonist Spermine were further reduced when blocking both SOC and ROC than single blocking SOC or ROC in HUVEC (P < 0.05). In conclusion, these results suggest that the SOC and ROC participate in the processes of CaR-evoked extracellular Ca(2+) influx and NO generation by a synergistic manner in HUVEC.
		                        		
		                        		
		                        		
		                        			Calcium
		                        			;
		                        		
		                        			physiology
		                        			;
		                        		
		                        			Calcium Channel Blockers
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			Calcium Channels
		                        			;
		                        		
		                        			physiology
		                        			;
		                        		
		                        			Calcium Signaling
		                        			;
		                        		
		                        			Fluoresceins
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			Human Umbilical Vein Endothelial Cells
		                        			;
		                        		
		                        			physiology
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Nitric Oxide
		                        			;
		                        		
		                        			biosynthesis
		                        			;
		                        		
		                        			Nitric Oxide Synthase Type III
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Receptors, Calcium-Sensing
		                        			;
		                        		
		                        			physiology
		                        			
		                        		
		                        	
10.New insights into store-independent Ca(2+) entry: secretory pathway calcium ATPase 2 in normal physiology and cancer.
International Journal of Oral Science 2013;5(2):71-74
		                        		
		                        			
		                        			Recent studies in secretory pathway calcium ATPases (SPCA) revealed novel functions of SPCA2 in interacting with store-operated Ca(2+) channel Orai1 and inducing Ca(2+) influx at the cell surface. Importantly, SPCA2-mediated Ca(2+) signaling is uncoupled from its conventional role of Ca(2+)-ATPase and independent of store-operated Ca(2+) signaling pathway. SPCA2-induced store-independent Ca(2+) entry (SICE) plays essential roles in many important physiological processes, while unbalanced SICE leads to enhanced cell proliferation and tumorigenesis. Finally, we have summarized the clinical implication of SICE in oral cancer prognosis and treatment. Inhibition of SICE may be a new target for the development of cancer therapeutics.
		                        		
		                        		
		                        		
		                        			Calcium Channels
		                        			;
		                        		
		                        			physiology
		                        			;
		                        		
		                        			Calcium Signaling
		                        			;
		                        		
		                        			physiology
		                        			;
		                        		
		                        			Calcium-Transporting ATPases
		                        			;
		                        		
		                        			physiology
		                        			;
		                        		
		                        			Cell Proliferation
		                        			;
		                        		
		                        			Cell Transformation, Neoplastic
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Neoplasms
		                        			;
		                        		
		                        			physiopathology
		                        			;
		                        		
		                        			ORAI1 Protein
		                        			;
		                        		
		                        			Prognosis
		                        			
		                        		
		                        	
            
Result Analysis
Print
Save
E-mail