1.Recent advances in study of antinociceptive conotoxins.
Acta Pharmaceutica Sinica 2009;44(6):561-565
The Conus venom is secreted by the duct and theca of venom. Most of conotoxins are composed of 10-40 amino acid residues with several disulfide bridges. They can specifically target neurotransmitter receptors including nAChRs, calcium ion channels, sodium ion channels and potassium ion channels, etc. Some conotoxins, such as that target N-Ca2+ channels, nAChR alpha9alpha10 subtype, TTX-R Na+ channels or NMDA receptors, have potent antinociceptive activities, omega-MVIIA, an Ca2+ channels blocker was approved by FDA in December, 2004 for marketing. Because of lower molecular weight and high specificity, conotoxins are the powerful pharmacology tools and potent analgesics without addiction. This review briefly summarizes the research progress of antinociceptive conotoxins and addresses on their targets and structure-activity relationships.
Analgesics
;
pharmacology
;
Calcium Channels
;
drug effects
;
Conotoxins
;
pharmacology
;
Sodium Channels
;
drug effects
;
Structure-Activity Relationship
2.Role of store-operated Ca2+ channels in ethanol-induced intracellular Ca2+ increase in HepG2 cells.
Hui-min LIU ; Li-hui YAN ; Zheng LUO ; Xiao-meng SUN ; Rui-bing CUI ; Xue-hui LI ; Ming YAN
Chinese Journal of Hepatology 2013;21(12):949-954
OBJECTIVETo investigate the mechanism of ethanol-induced calcium overload in hepatocytes and the related role of store-operated calcium channels (SOCs).
METHODSHepG2 cells were treated an ethanol concentration gradient with or without intervention treatment with the extracellular calcium chelator EGTA or the SOCs inhibitor 2-aminoethoxydiphenyl borate (2-APB). Effects on cell viability were assessed by the CCK8 assay. Effects on leakage of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) were determined by automatic biochemical analyzer measurements of the culture supernatants. Effects on cytoplasmic free Ca2+ concentration ([Ca2+]i) were accessed by detecting fluorescence intensity of the calcium indicator Fluo-3/AM with a flow cytometer. Effects on mRNA and protein expression levels of SOCs, stromal interacting factor 1 (STIM1), and calcium release-activated calcium channel protein 1 (Orai1) were evaluated by qPCR and western blotting.
RESULTSThe ethanol treatment produced dose-dependent reduction in cell viability (r = -0.985, P less than 0.01) and increases in leakage of ALT (F = 15.286, P less than 0.01) and AST (F = 39.674, P less than 0.01). Compared to untreated controls, the ethanol treatments of 25, 50, 100, 200 and 400 mM induced significant increases in [Ca2+]i level (1.25+/-0.36, 1.31+/-0.15, 1.41+/-0.18, 2.29+/-0.25, 2.58+/-0.19; F = 15.286, P less than 0.01). Both intervention treatments, EGTA and 2-APB, significantly reduced the 200 mM ethanol treatment-induced [Ca2+]i increase (2.32+/-0.08 reduced to 1.79+/-0.15 (t = 7.201, P less than 0.01) and 1.86+/-0.09 (t = 8.183, P less than 0.01) respectively). EGTA and 2-APB also increased the ethanol-treated cells' viability and reduced the ALT and AST leakage. The 200 mM ethanol treatment stimulated both gene and protein expression of STIM1 and Orai1, and the up-regulation effect lasted at least 72 h after treatment.
CONCLUSIONEthanol-induced dysregulation of SOCs may be an important molecular mechanism of ethanol-induced [Ca2+]i rise in hepatocytes and the related liver cell injury.
Calcium ; metabolism ; Calcium Channels ; metabolism ; Ethanol ; adverse effects ; Hep G2 Cells ; Hepatocytes ; drug effects ; metabolism ; Humans
3.Effects of Dantrolene on the Interaction of Calcium and Erythrocyte Membrane.
Yonsei Medical Journal 1987;28(4):249-254
Dantrolene sodium in vitro inhibited the ATP-dependent efflux of calcium from human Fed cells, the Ca++-ATPase activity of red blood cell membrane fragments (RBCMF) and passive calcium binding to RBCMF. These effects were obtained With concentrations of dantrolene sodium between 2.5 and 20 uM. However the passive influx of Ca++ was measured at 37 degrees C in cells pretreated to abolish Ca++ pumping and was not influenced by dantrolene sodium. From these results, it was concluded that dantrolene sodium inhibits an active Ca++ extrusion across the red cell membrane by inhibiting Ca++-ATPase activity which is intimately involved with the Ca++ transport mechanism in the red cell membrane.
Calcium/metabolism*
;
Dantrolene/pharmacology*
;
Erythrocyte Membrane/drug effects*
;
Erythrocyte Membrane/metabolism
;
Human
;
Ion Channels/drug effects*
;
Ion Channels/metabolism
4.Effects of Chinese herbs on multiple ion channels in isolated ventricular myocytes.
Ning LI ; Ke-Juan MA ; Xiang-Feng WU ; Qi SUN ; Yi-Hui ZHANG ; Jie-Lin PU
Chinese Medical Journal 2007;120(12):1068-1074
BACKGROUNDShensong Yangxin (SSYX) is one of the compound recipe of Chinese materia medica. This study was conducted to investigate the effects of SSYX on sodium current (I(Na)), L-type calcium current (I(Ca, L)), transient outward potassium current (I(to)), delayed rectifier current (I(K)), and inward rectifier potassium currents (I(K1)) in isolated ventricular myocytes.
METHODSWhole cell patch-clamp technique was used to study ion channel currents in enzymatically isolated guinea pig or rat ventricular myocytes.
RESULTSSSYX decreased peak I(Na) by (44.84 +/- 7.65)% from 27.21 +/- 5.35 to 14.88 +/- 2.75 pA/pF (n = 5, P < 0.05). The medicine significantly inhibited the I(Ca, L). At concentrations of 0.25, 0.50, and 1.00 g/100 ml, the peak I(Ca, L) was reduced by (19.22 +/- 1.10)%, (44.82 +/- 6.50)% and (50.69 +/- 5.64)%, respectively (n = 5, all P < 0.05). SSYX lifted the I - V curve of both I(Na) and I(Ca, L) without changing the threshold, peak and reversal potentials. At the concentration of 0.5%, the drug blocked the transient component of I(to) by 50.60% at membrane voltage of 60 mV and negatively shifted the inactive curve and delayed the recovery from channel inactivation. The tail current density of I(K) was decreased by (30.77 +/- 1.11)% (n = 5, P < 0.05) at membrane voltage of 50 mV after exposure to the medicine and the time-dependent activity of I(K) was also inhibited. Similar to the effect on I(K), the SSYX inhibited I(K1) by 33.10% at the test potential of -100 mV with little effect on reversal potential and the rectification property.
CONCLUSIONSThe experiments revealed that SSYX could block multiple ion channels such as I(Na) I(Ca, L), I(k), I(to) and I(K1), which may change the action potential duration and contribute to some of its antiarrhythmic effects.
Animals ; Anti-Arrhythmia Agents ; pharmacology ; Calcium Channels ; drug effects ; Dose-Response Relationship, Drug ; Drugs, Chinese Herbal ; pharmacology ; Guinea Pigs ; Heart Ventricles ; Ion Channels ; drug effects ; Male ; Myocytes, Cardiac ; drug effects ; Potassium Channels ; drug effects ; Rats ; Sodium Channels ; drug effects
5.The effect of calcium channel blocker on human sperm.
National Journal of Andrology 2003;9(9):700-706
Calcium ion exists extensively in cells as the second messenger, and calcium channel blocker (CCB) is widely used to treat cardiac, skeletal muscular diseases. With the advances in the investigation of human sperm calcium channel, CCB has been proved to affect not only the shape, activation and acrosome reaction, but also the function of human sperm, which may afford a new approach to male contraception.
Calcium Channel Blockers
;
pharmacology
;
Calcium Channels
;
physiology
;
Humans
;
Male
;
Spermatozoa
;
drug effects
;
physiology
6.New insights into the activation mechanism of store-operated calcium channels: roles of STIM and Orai.
Journal of Zhejiang University. Science. B 2008;9(8):591-601
The activation of Ca2+ entry through store-operated channels by agonists that deplete Ca2+ from the endoplasmic reticulum (ER) is a ubiquitous signaling mechanism, the molecular basis of which has remained elusive for the past two decades. Store-operated Ca2+-release-activated Ca2+ (CRAC) channels constitute the sole pathway for Ca2+ entry following antigen-receptor engagement. In a set of breakthrough studies over the past two years, stromal interaction molecule 1 (STIM1, the ER Ca2+ sensor) and Orai1 (a pore-forming subunit of the CRAC channel) have been identified. Here we review these recent studies and the insights they provide into the mechanism of store-operated Ca2+ channels (SOCCs).
Animals
;
Calcium
;
metabolism
;
Calcium Channels
;
metabolism
;
Calcium Signaling
;
drug effects
;
Humans
;
Membrane Proteins
;
antagonists & inhibitors
;
metabolism
;
Protein Binding
7.Different effects of acetylcholine on the action potential and force contraction in guinea pig atrial and ventricular myocardium.
Ping FANG ; Wei-Jin ZANG ; Xiao-Jiang YU ; Qiang SUN ; Yi-Min ZANG ; Jun LU
Acta Physiologica Sinica 2002;54(4):311-316
The purpose of this study was to investigate the different effects of ACh on the action potential and force contraction in guinea pig atrial and ventricular myocardium by using standard microelectrodes and force transducer. The results showed that the duration of the action potential (APD) of atrial myocardium was shortened from 208.57+/-36.05 to 101.78+/-14.41 ms (n=6, P<0.01), and the APD of the ventricular myocardium was shortened from 286.73+/-36.11 to 265.16+/-30.06 ms (n=6, P<0.01).The amplitude of the action potential (APA) of the atrial myocardium was decreased from 88.00+/-9.35 to 62.62+/-20.50 mV (n=6, P<0.01), while the APA of the ventricular myocardium did not change significantly.The force contraction of atrial myocardium was inhibited completely (n=6, P<0.01), while the force contraction of ventricular myocardium was inhibited by 37.57+/-2.58% (n=6, P<0.01). The ACh effects correlated with its concentration. The K(D) of the APD shortening effects in the atrial and ventricular myocardium were 0.275 and 0.575 micromol/L. The K(D) of the negative inotropic in the atrial and ventricular myocardium were 0.135 and 0.676 micromol/L, respectively. The corresponding data points were compared using t test between the atrial and ventricular myocardium, and the differences were significant when the ACh concentration was above 10 nmol/L. Furthermore, atropine (10 micromol/L) and CsCl (20 mmol/L) blocked the effects of 10 micromol/L ACh on the APD of ventricular myocardium, while CdCl2 (0.1 mmol/L) had no influence on these effects. In conclusion, ACh could shorten the action potential duration and inhibit the force contraction of atrial and ventricular myocardium in a concentration-dependent manner. There are differences in the effects of ACh on the atrial and ventricular myocardium. The atrial myocardium is more sensitive to ACh than the ventricular myocardium. It is probable that the muscarinic receptor and the potassium channel, but not the calcium channel, are involved in the ACh-induced shortening of the ventricular APD.
Acetylcholine
;
pharmacology
;
Action Potentials
;
drug effects
;
Animals
;
Calcium Channels
;
metabolism
;
Guinea Pigs
;
Heart Atria
;
drug effects
;
Heart Ventricles
;
drug effects
;
Microelectrodes
;
Potassium Channels
;
metabolism
;
Receptors, Muscarinic
;
metabolism
8.Electrophysiology mechanisms of 4-butyl-alpha-agarofuran: a new anxiolytic and antidepressant drug.
Chun-Lin CHEN ; Wei-Ping WANG ; Ling WANG ; Xiao-Liang WANG
Acta Pharmaceutica Sinica 2013;48(1):38-44
To investigate the electrophysiology mechanisms of new anxiolytic and antidepressant drug: 4-butyl-alpha-agarofuran (AF-5), patch clamp-recording was used to test the effects of AF-5 on voltage-dependent sodium currents, voltage-dependent potassium currents, L-type voltage-dependent calcium currents and GABA dependent Cl(-) currents in primary cultured rat cortical neurons. Effects of AF-5 on Kv2.1 currents, expressed stably in HEK293 cells, were also tested. Our results showed that, delayed rectifier potassium currents (I(K(DR, L-type voltage-dependent calcium currents (I(LC-ca)) in primary cultured rat cortical neurons and Kv2.1 currents in HEK293 cells were significantly inhibited by AF-5, with IC50 as 6.17, 4.4 and 5.29 micromol x L(-1) respectively. However, voltage-dependent sodium currents (I(Na)), GABA dependent Cl(-) currents and transient outward potassium currents (I(K(A)) in primary cultured rat cortical neurons were not significantly blocked by AF-5. Our results concluded that, blocked I(K(DR)) and I(L-Ca) currents may be one of the mechanisms of anxiolytic and antidepression actions of AF-5.
Animals
;
Antidepressive Agents
;
pharmacology
;
Calcium Channels, L-Type
;
drug effects
;
Cells, Cultured
;
Cerebral Cortex
;
cytology
;
Chloride Channels
;
drug effects
;
Delayed Rectifier Potassium Channels
;
drug effects
;
HEK293 Cells
;
Humans
;
Neurons
;
cytology
;
Patch-Clamp Techniques
;
Potassium Channels, Voltage-Gated
;
drug effects
;
Rats
;
Rats, Wistar
;
Sesquiterpenes
;
pharmacology
;
Shab Potassium Channels
;
drug effects
;
Voltage-Gated Sodium Channels
;
drug effects
9.Calcium channel mechanism by which betaine promotes proliferation of lymphocytes in mice.
Yubin JI ; Shiyong GAO ; Xiaoyan FENG ; Liwei HE
China Journal of Chinese Materia Medica 2009;34(15):1959-1963
OBJECTIVETo study how the way in which betaine promotes the proliferation of mouse spleen lymphocytes is related to calcium channels.
METHODBALB/c mice were used for this experiment. Mouse spleen lymphocytes were obtained through in vitro cultivation after they had been separated, and were divided into a negative control group, a Con A group, and 0.04, 0.4, 4, and 20 mmol x L(-1) betaine groups. MTT was used to observe the effect of betaine on the proliferation of mouse spleen lymphocytes; flow cytometry was used to measure the changes in the cell cycle of mouse spleen lymphocytes; and laser confocal scanning microscopy was used to observe the changes in the intracellular [Ca2+]i of mouse spleen lymphocytes after betaine or different calcium channel blockers were applied.
RESULTBetaine was found to promote the proliferation of mouse spleen lymphocytes 12 h after it had been applied in vitro in concentrations of 4 and 20 mmol x L(-1). It was also found to promote the proliferation of mouse spleen lymphocytes 24 h and 48 h after it had been applied in vitro in concentrations of 0.04, 0.4, 4, and 20 mmol x L(-1), with the effect being most marked for the 4 mmol x L(-1) group 24 h after its application. It was found to facilitate the entry of mouse spleen lymphocytes from the G0/G1 to the S phase 4, 6, 18, and 24 h after it had been applied to mouse spleen lymphocytes in a concentration of 4 mmol x L(-1), with the effect being most marked at 18 h after its application. Intracellular [Ca2+]i in mouse spleen lymphocytes increased significantly (P < 0.01) 6, 12, 18 h after 4 mmol x L(-1) betaine had acted on the lymphocytes, with the effect being most marked at 6 h. The calcium channel blockers nifidipine, diltiazem, mibefradil, and genistein had no effect on the increase of the intracellular [Ca2+]i in mouse spleen lymphocytes due to the application of betaine, while verapamil, mycifradin, heparin, and procaine could block such increase.
CONCLUSIONBetaine facilitates the entry of mouse spleen lymphocytes from the G0/G1 into the S phase by raising the intracellular [Ca2+]i in these cells, thus promoting their proliferation. Intracellular [Ca2+]i increases mainly in two ways: (1) By affecting the alpha1 subunit of the L-type voltage-gated calcium channel with mediation by G proteins and thus leading to an efflux of intracellular calcium: (2) By affecting the IP3R and RyR calcium channels of the intracellular calcium stores and thus leading to the release of intracellular calcium.
Animals ; Betaine ; pharmacology ; Calcium ; metabolism ; Calcium Channels ; metabolism ; Cell Cycle ; drug effects ; Cell Proliferation ; drug effects ; Female ; Lymphocytes ; cytology ; drug effects ; metabolism ; Male ; Mice ; Mice, Inbred BALB C
10.Ethacrynic acid inhibits airway smooth muscle contraction in mice.
Xiao-Xue ZHAO ; Wei-Wei CHEN ; Yuan-Yuan CHEN ; Meng-Su LIU ; Meng-Yue LI ; Lei CAO ; Qing-Hua LIU
Acta Physiologica Sinica 2019;71(6):863-873
The aim of this study was to investigate the inhibitory effect and the underlying mechanism of ethacrynic acid (EA) on the contraction in mice. BL-420S force measuring system was used to measure the tension of mouse tracheal rings. The whole cell patch clamp technique was utilized to record the channel currents of airway smooth muscle (ASM) cells. The calcium imaging system was used to determine the intracellular Ca concentration ([Ca]) in ASM cells. The results showed that EA significantly inhibited the high K (80 mmol/L) and acetylcholine (ACh, 100 µmol/L)-induced contraction of mouse tracheal rings in a dose-dependent manner. The maximal relaxation percentages were (97.02 ± 1.56)% and (85.21 ± 0.03)%, and the median effective concentrations were (40.28 ± 2.20) μmol/L and (56.22 ± 7.62) μmol/L, respectively. EA decreased the K and ACh-induced elevation of [Ca] from 0.40 ± 0.04 to 0.16 ± 0.01 and from 0.50 ± 0.01 to 0.39 ± 0.01, respectively. In addition, EA inhibited L-type voltage-dependent calcium channel (LVDCC) and store-operated calcium channel (SOCC) currents in ASM cells, and Ca influx. Moreover, EA decreased the resistance of the respiratory system (Rrs) in vivo in mice. These results indicated that EA inhibits LVDCC and SOCC, which results in termination of Ca influx and decreases of [Ca], leading to relaxation of ASM. Taken together, EA might be a potential bronchodilator.
Animals
;
Calcium
;
metabolism
;
Calcium Channels, L-Type
;
Enzyme Inhibitors
;
pharmacology
;
Ethacrynic Acid
;
pharmacology
;
Mice
;
Muscle Contraction
;
drug effects
;
Muscle, Smooth
;
drug effects
;
Respiratory System
;
cytology
;
drug effects