1.1, 25(OH)2D3 and pulmonary fibrosis.
Chinese Journal of Pathology 2013;42(10):714-716
2.Resveratrol inhibits neuronal discharges in rat hippocampal CA1 area.
Ming LI ; Qing-Shan WANG ; Yi CHEN ; Ze-Min WANG ; Zheng LIU ; Shu-Mei GUO
Acta Physiologica Sinica 2005;57(3):355-360
The effects of resveratrol on the discharges of neurons in CA1 area of rat hippocampal slices were examined by using extracellular recording technique. The results are as follows: (1) In response to the application of resveratrol (0.05, 0.5, 5.0 micromol/L, n=52) into the superfusate for 2 min, the spontaneous discharge rate of 46/52 (88.5%) neurons was significantly decreased in a dose-dependent manner; (2) Application of L-glutamate (0.2 mmol/L) into the superfusate led to a marked increase in discharge rate of all 8 (100%) slices in an epileptiform pattern. The increased discharges were suppressed by application of resveratrol (5.0 micromol/L); (3) In 7 slices, perfusion of the selective L-type calcium channel agonist, Bay K8644 (0.1 micromol/L), induced a significant increase in the discharge rate of 6/7 (85.7%) slices. The increased discharges were suppressed by application of resveratrol (5.0 micromol/L); (4) In 9 slices, perfusion of nitric oxide synthase (NOS) inhibitor N(G)-nitro-L-arginine methyl ester (L-NAME, 50 micromol/L) into the superfusate significantly augmented the discharge rate of 7/9 (77.8%) slices. Resveratrol (5.0 micromol/L) applied into the superfusate reduced the increased discharges of all 7/7 (100%) neurons; (5) In 10 units, the large-conductance Ca(2+)-activated K(+) channel blocker (tetraethylammonium chloride, TEA, 1 mmol/L) significantly increased the discharge rate of 9/10 (90%) slices. Resveratrol (5.0 micromol/L) applied into the superfusate inhibited the discharges of 8/9 (88.9%) slices. These results suggest that resveratrol inhibits the electrical activity of CA1 neurons. This effect may be related to the blockade of L-type calcium channel and a subsequent reduction of calcium influx, and probably has no association with large-conductance Ca(2+)-activated K(+) channel.
3-Pyridinecarboxylic acid, 1,4-dihydro-2,6-dimethyl-5-nitro-4-(2-(trifluoromethyl)phenyl)-, Methyl ester
;
pharmacology
;
Animals
;
Calcium Channel Agonists
;
pharmacology
;
Calcium Channel Blockers
;
pharmacology
;
Calcium Channels, L-Type
;
Electrophysiology
;
Glutamic Acid
;
pharmacology
;
Hippocampus
;
cytology
;
physiology
;
Male
;
Neurons
;
physiology
;
Rats
;
Rats, Sprague-Dawley
;
Stilbenes
;
pharmacology
3.Ginkgolide B inhibits carotid sinus baroreflex in anesthetized male rats.
Chun-Yan WANG ; Yu-Ming WU ; Lin XIAO ; Hong-Mei XUE ; Ru WANG ; Fu-Wei WANG ; Rui-Rong HE
Acta Physiologica Sinica 2008;60(1):17-22
The effects of ginkgolide B on the carotid sinus baroreflex (CSB) were studied in the perfused isolated carotid sinus of 30 anesthetized Sprague-Dawley male rats. The results were as follows. (1) By perfusing with ginkgolide B (0.1, 1, 10 μmol/L), the functional curve of the baroreflex was shifted to the right and upward. There was a marked decrease in peak slope (PS) and reflex decrease (RD) in mean arterial pressure (P<0.01), while the threshold pressure (TP), equilibrium pressure (EP) and saturation pressure (SP) were significantly increased (P<0.05, P<0.01). Among the functional parameters of CSB, the changes in PS, RD, TP, EP and SP were dose-dependent. (2) Pretreatment with Bay K8644 (500 nmol/L), an agonist of L-type calcium channel, completely eliminated the effects of ginkgolide B (1 μmol/L) on the CSB. (3) Pretreatment with tetraethylammonium (TEA, 1 mmol/L), an inhibitor of potassium channel, completely abolished the above effects of ginkgolide B (1 μmol/L) on the CSB. These results suggest that ginkgolide B inhibits the CSB in anesthetized rats, which is mediated by decreased calcium influx and increased potassium efflux in baroreceptor nerve endings.
3-Pyridinecarboxylic acid, 1,4-dihydro-2,6-dimethyl-5-nitro-4-(2-(trifluoromethyl)phenyl)-, Methyl ester
;
pharmacology
;
Animals
;
Baroreflex
;
drug effects
;
Calcium Channel Agonists
;
pharmacology
;
Calcium Channels, L-Type
;
Carotid Sinus
;
physiopathology
;
Ginkgolides
;
pharmacology
;
Lactones
;
pharmacology
;
Male
;
Potassium Channel Blockers
;
pharmacology
;
Pressoreceptors
;
metabolism
;
Rats
;
Rats, Sprague-Dawley
;
Tetraethylammonium
;
pharmacology
4.1 alpha, 25-dihydroxyvitamin D3 and its analogues modulate the phagocytosis of human monocyte-derived dendritic cells.
Ke-jian ZHU ; Wei-fang ZHOU ; Min ZHENG
Acta Pharmaceutica Sinica 2002;37(2):94-97
AIMTo investigate the role of 1 alpha, 25-dihydroxyvitamin D3 (calcitriol) and its analogues tacalcitol and 24, 25(OH)2D3 on the phagocytosis of human monocyte-derived dendritic cells (MoDC).
METHODSMoDC were generated in vitro by differentiating monocytes in the presence of GM-CSF and IL-4 for 5 days. Expression of mannose receptor (MR) and Fc gamma receptors (Fc gamma Rs) by MoDC was analysed by flow cytometry. Zymosan ingestion was measured to assess the phagocytosis of MoDC.
RESULTSMoDC expressed high level of MR and Fc gamma Rs and showed the capacity of zymosan ingestion. Calcitriol and tacalcitol but no 24, 25(OH)2D3 not only upregulated the expression of MR and Fc gamma Rs on MoDC but also correspondingly enhanced their phagocytosis by increasing zymoasan ingestion. Furthermore, the upregulatory role occurred in the early stage of MoDC differentiation and was irreversible. The upregulatory role of calcitriol was dose dependent.
CONCLUSIONCalcitriol and its analogue tacalcitol may play an important role in dendritic cell binding and capturing foreign antigens at the initiation of immune response.
Calcitriol ; pharmacology ; Calcium Channel Agonists ; pharmacology ; Dendritic Cells ; drug effects ; metabolism ; physiology ; Dihydroxycholecalciferols ; pharmacology ; Humans ; Lectins, C-Type ; metabolism ; Mannose-Binding Lectins ; metabolism ; Monocytes ; cytology ; Phagocytosis ; drug effects ; Receptors, Cell Surface ; metabolism ; Receptors, IgG ; metabolism
5.Regulation of matrix metalloproteinase-9 protein expression by 1alpha,25-(OH)2D3 during osteoclast differentiation.
Jian Hong GU ; Xi Shuai TONG ; Guo Hong CHEN ; Xue Zhong LIU ; Jian Chun BIAN ; Yan YUAN ; Zong Ping LIU
Journal of Veterinary Science 2014;15(1):133-140
To investigate 1alpha,25-(OH)2D3 regulation of matrix metalloproteinase-9 (MMP-9) protein expression during osteoclast formation and differentiation, receptor activator of nuclear factor kappaB ligand (RANKL) and macrophage colony-stimulating factor (M-CSF) were administered to induce the differentiation of RAW264.7 cells into osteoclasts. The cells were incubated with different concentrations of 1alpha,25-(OH)2D3 during culturing, and cell proliferation was measured using the methylthiazol tetrazolium method. Osteoclast formation was confirmed using tartrate-resistant acid phosphatase (TRAP) staining and assessing bone lacunar resorption. MMP-9 protein expression levels were measured with Western blotting. We showed that 1alpha,25-(OH)2D3 inhibited RAW264.7 cell proliferation induced by RANKL and M-CSF, increased the numbers of TRAP-positive osteoclasts and their nuclei, enhanced osteoclast bone resorption, and promoted MMP-9 protein expression in a concentration-dependent manner. These findings indicate that 1alpha,25-(OH)2D3 administered at a physiological relevant concentration promoted osteoclast formation and could regulate osteoclast bone metabolism by increasing MMP-9 protein expression during osteoclast differentiation.
Acid Phosphatase/metabolism
;
Animals
;
Blotting, Western
;
Calcitriol/*pharmacology
;
Calcium Channel Agonists/pharmacology
;
*Cell Differentiation
;
Cell Line
;
Cell Proliferation
;
Gene Expression Regulation, Enzymologic/*drug effects
;
Isoenzymes/metabolism
;
Matrix Metalloproteinase 9/*genetics/metabolism
;
Mice
;
Osteoclasts/*cytology/*enzymology
;
Tetrazolium Salts
;
Thiazoles
6.Protective effect of calcium channel agonist BayK8644 on lungs against ischemia-reperfusion injury in rabbits.
Hang ZHANG ; Siyi LIU ; Xin WANG ; Chunfang ZHANG
Journal of Central South University(Medical Sciences) 2010;35(10):1091-1098
OBJECTIVE:
To explore the protective effect of calcium channel agonist BayK8644 preconditioning on the lungs against ischemia-reperfusion injury (I/R) and its mechanism in rabbits.
METHODS:
Forty rabbits were randomly divided into 4 groups (10 in each group): a sham-operated group (Sham), an I/R group (I/R), an ischemic preconditioning (IP) group (IP), and a BayK8644 preconditioning group(BayK8644).The wet to dry weight (W/D) ratio, superoxide dismutase (SOD) activity, myleoperoxidase (MPO), and malondialdehyde (MDA) contents of the lung tissues were measured after the operation. Morphological and ultrastructural changes of the lung tissue were observed by light and electron microscope. The expression of pulmonary surfactant-associated protein-A (SP-A) was examined with immunohistochemistry.
RESULTS:
The W/D ratio, MPO and MDA contents of the lung tissue in the BayK8644 group and IP group were significantly lower than those in the I/R group (P<0.05), while the SOD activity and expression of SP-A of the lung tissue in the BayK8644 group and IP group were significantly higher than those in the I/R group(P<0.05), The morphological changes and ultrastructural changes were less notable in the BayK8644 group and IP group, compared with the I/R group. There was no significant difference in SOD activity, MPO and MDA contents between the BayK8644 group and IP group (P>0.05).
CONCLUSION
Appropriate BayK8644 preconditioning can induce transient Ca²+ influx, and elicit strong protection against the lung ischemia-reperfusion injury, which can simulate the endogenous protective effect of ischemic preconditioning.
3-Pyridinecarboxylic acid, 1,4-dihydro-2,6-dimethyl-5-nitro-4-(2-(trifluoromethyl)phenyl)-, Methyl ester
;
pharmacology
;
Animals
;
Calcium Channel Agonists
;
pharmacology
;
Female
;
Ischemic Preconditioning
;
methods
;
Lung
;
blood supply
;
Male
;
Rabbits
;
Random Allocation
;
Reperfusion Injury
;
prevention & control
7.Role of PKG-L-type calcium channels in the antinociceptive effect of intrathecal sildenafil.
Woong Mo KIM ; Myung Ha YOON ; Jin Hua CUI
Journal of Veterinary Science 2010;11(2):103-106
Sildenafil increases the cyclic guanosine monophosphate (cGMP) by inhibition of a phosphodiesterase 5, thereby leading to an antinociceptive effect. The increased cGMP may exert the effect on an L-type calcium channel through the activation of protein kinase G (PKG). The purpose of this study was to examine the possible involvement of a PKG-L-type calcium channel on the effect of sildenafil at the spinal level. Catheters were inserted into the intrathecal space of male SD rats. Pain was induced by applying 50 microliter of a 5% formalin solution to the hindpaw. The sildenafil-induced effect was examined after an intrathecal pretreatment of a PKG inhibitor (KT 5823), or a L-type calcium channel activator (FPL 64176). Intrathecal sildenafil produced an antinociceptive effect during phase 1 (0~10 min interval) and phase 2 (10~60 min interval) in the formalin test. Intrathecal KT 5823 and FPL 64176 attenuated the antinociceptive effect of sildenafil during both phases. Sildenafil is effective against both acute pain and the facilitated pain state at the spinal level. In addition, the inhibition of an L-type calcium channel by activation of the PKG may contribute to the antinocieptive mechanism of sildenafil in the spinal cord.
Animals
;
Calcium Channel Agonists/pharmacology
;
Calcium Channels, L-Type/*physiology
;
Carbazoles/pharmacology
;
Cyclic GMP-Dependent Protein Kinases/antagonists & inhibitors/*physiology
;
Dose-Response Relationship, Drug
;
Male
;
Pain/drug therapy/*physiopathology
;
Pain Measurement
;
Piperazines/*pharmacology/therapeutic use
;
Protein Kinase Inhibitors/pharmacology
;
Purines/pharmacology/therapeutic use
;
Pyrroles/pharmacology
;
Rats
;
Rats, Sprague-Dawley
;
Sulfones/*pharmacology/therapeutic use
8.Effects of agmatine on the electrical activity of subfornical organ neurons.
Ze-Min WANG ; Shu-Mei JI ; Hao ZHANG ; Guang-Qi SUN ; Zhi-An WANG ; Rui-Rong HE
Acta Physiologica Sinica 2004;56(4):493-497
The aim of this study was to investigate the effects of agmatine (Agm) on the electrical activity of neurons in subfornical organ (SFO) slices using extracellular recording technique. The results are as follows. (1) In response to the application of Agm (1.0 micromol/L) into the superfusate for 2 min, the discharge rate of 24/28 (85.7%) subfornical neurons was decreased significantly, while the discharge rate of 4/28 (14.3%) neurons were not affected. (2) Pretreatment with L-glutamate (0.3 mmol/L) led to a marked increase in the discharge rate of 19/24 (79.2%) subfornical neurons in an epileptiform pattern and the activity of the remaining 5/24 (20.8%) neurons was unaffected. By application of Agm (1.0 micromol/L) into the superfusate for 2 min, the epileptiform dicharge of 15/19 (78.9%) neurons was suppressed significantly, while that of the other 4 (21.1%) neurons was not inhibited. (3) In 12 neurons, perfusion of the selective L-type calcium channel agonist, Bay K-8644 (0.1 micromol/L), induced a significant increase in the discharge rate of 10/12 (83.3%) neurons, while the other 2 (16.7%) neurons showed no change. The increased discharge of 8/10 (80%) neurons was reduced by application of Agm (1.0 micromol/L) into the superfusate and that of 2/10 (20%) neurons was not affected. (4) Application of nitric oxide synthase (NOS) inhibitor N(G)-nitro-L-arginine methyl ester (L-NAME, 50 micromol/L) into the superfusate also significantly increased the discharge rate of 6/9 (66.7%) neurons, and that of 3/9 (33.3%) neurons had no response. Agm (1.0 micromol/L) applied into the superfusate reduced the increased discharge of all 6/6 (100%) neurons. These results suggest that Agm can inhibit the spontaneous discharge, and L-glutamate, Bay K-8644- or L-NAME-induced discharge of neurons in SFO. These inhibitory effects of Agm may be related to the blockade of NMDA receptors and reduction in calcium influx in SFO neurons.
3-Pyridinecarboxylic acid, 1,4-dihydro-2,6-dimethyl-5-nitro-4-(2-(trifluoromethyl)phenyl)-, Methyl ester
;
pharmacology
;
Action Potentials
;
drug effects
;
Agmatine
;
pharmacology
;
Animals
;
Calcium Channel Agonists
;
pharmacology
;
Female
;
Glutamic Acid
;
pharmacology
;
Hippocampus
;
physiology
;
Male
;
Neurons
;
physiology
;
Rats
;
Rats, Sprague-Dawley
;
Receptors, Drug
;
agonists
;
Receptors, N-Methyl-D-Aspartate
;
antagonists & inhibitors
;
Subfornical Organ
;
drug effects
;
physiology
9.Electrophysiological effects of capsaicin on spontaneous activity of rabbit atrioventricular node cells.
Qian LI ; Yu-Ming WU ; Rui-Rong HE
Acta Physiologica Sinica 2004;56(2):248-252
To study the electrophysiological effects of capsaicin on spontaneous activity of rabbit atrioventricular (AV) node cells, parameters of action potential in AV node were recorded using intracellular microelectrode technique. Capsaicin (1-30 micromol/L) not only decreased the amplitude of action potential, maximal rate of depolarization (V(max)), velocity of diastolic (phase 4) depolarization, and rate of pacemaker firing, but also prolonged the duration of 90% repolarization of action potential (APD(90)) in a concentration-dependent manner. Both application of L-type Ca(2+) channel agonist Bay K8644 (0.5 micromol/L) and elevation of calcium concentration (5 mmol/L) in superfusate antagonized the effects of capsaicin on pacemaker cells. Pretreatment with ruthenium red (10 micromol/L), a capsaicin receptor blocker, did not affect the effects of capsaicin on AV node cells. Capsaicin exerted an inhibitory action on spontaneous activity of AV node cells in rabbits. These effects were likely due to reduction in calcium influx, but were not mediated by VR1.
3-Pyridinecarboxylic acid, 1,4-dihydro-2,6-dimethyl-5-nitro-4-(2-(trifluoromethyl)phenyl)-, Methyl ester
;
pharmacology
;
Action Potentials
;
drug effects
;
Animals
;
Atrioventricular Node
;
cytology
;
physiology
;
Calcium
;
metabolism
;
Calcium Channel Agonists
;
pharmacology
;
Calcium Channels, L-Type
;
drug effects
;
Capsaicin
;
pharmacology
;
Male
;
Microelectrodes
;
Rabbits
;
Receptors, Drug
;
antagonists & inhibitors
;
Ruthenium Red
;
pharmacology
10.Resveratrol inhibits electrical activity of paraventricular nucleus neurons in rat hypothalamic slices.
Ru WANG ; Lin XIAO ; Hui-Juan MA ; Li-Hua ZHANG ; Rui-Rong HE ; Yu-Ming WU
Acta Physiologica Sinica 2008;60(2):279-283
To study the role of resveratrol in the discharges of neurons in paraventricular nucleus (PVN) in hypothalamic slices, extracellular single-unit discharge recording technique was used. The effects of resveratrol were examined with glass microelectrodes in the rat PVN neurons at resting potential level. The results were as follows: (1) In response to the application of resveratrol (0.05, 0.5, 5.0 μmol/L, n=29) to the superfusate for 2 min, the spontaneous discharge rate (SDR) of neurons in 28/29 (96.6%) hypothalamic slices significantly decreased in a dose-dependent manner; (2) Pretreatment with L-glutamate (0.2 mmol/L) led to a marked increase in the SDR in all 8/8 (100%) slices in an epileptiform pattern. The increased discharges were suppressed by the application of resveratrol (5.0 mmol/L) in all 8 slices; (3) In 8 slices, perfusion of the selective L-type calcium channel agonist, Bay K8644 (0.1 μmol/L), induced a significant increase in the discharge rate in 8/8 (100%) slices. Resveratrol (5.0 μmol/L) significantly attenuated the increased SDR in all 8 slices; (4) Pretreatment with the nitric oxide synthase (NOS) inhibitor N(ω)-nitro-L-arginine methyl ester (L-NAME, 50 μmol/L) increased SDR in 7/8 (87.5%) slices, but did not affect the inhibitory effect of resveratrol (5.0 μmol/L). These results suggest that resveratrol inhibits the electrical activity of PVN neurons and exerts neuroprotective actions on central neurons. The inhibitory effect of resveratrol is possibly related to the blockade of L-type calcium channel, but not due to NO release.
3-Pyridinecarboxylic acid, 1,4-dihydro-2,6-dimethyl-5-nitro-4-(2-(trifluoromethyl)phenyl)-, Methyl ester
;
pharmacology
;
Action Potentials
;
Animals
;
Calcium Channel Agonists
;
pharmacology
;
Calcium Channels, L-Type
;
metabolism
;
Glutamic Acid
;
pharmacology
;
In Vitro Techniques
;
Microelectrodes
;
NG-Nitroarginine Methyl Ester
;
pharmacology
;
Neurons
;
drug effects
;
Paraventricular Hypothalamic Nucleus
;
cytology
;
Rats
;
Rats, Sprague-Dawley
;
Stilbenes
;
pharmacology