1.Progress on the genetics of calcific aortic valve disease.
Chinese Journal of Cardiology 2014;42(10):885-888
2.Clinical features of familial idiopathic basal ganglia calcification caused by a novel mutation in the SLC20A2 gene.
Min ZHU ; Cheng FANG ; Xiaobing LI ; Meihong ZHOU ; Hui WAN ; Daojun HONG
Chinese Journal of Medical Genetics 2015;32(1):64-68
OBJECTIVETo describe clinical and genetic feature in a Chinese family with familial idiopathic basal ganglia calcification 3 (IBGC-3) caused by a novel mutation in the SLC20A2 gene.
METHODSClinical data was collected from a family with familial IBGC-3. All of the family members underwent cerebral CT. Potential mutation of the SLC20A2 gene were screened in the proband, 5 symptomatic patients, 5 asymptomatic family members, and 100 healthy Chinese controls. Exon 8 of the SLC20A2 gene was cloned into plasmid and sequenced.
RESULTSThere were 6 symptomatic patients (3 males and 3 females) in an autosomal dominant pedigree. The patients manifested as juvenile-onset paroxysmal kinesigenic dyskinesia, in addition to pyramidal signs in proband. 5 patients alive had calcification in bilateral basal ganglia and subcortical areas. One asymptomatic member also had calcification in the brain; and 2 cases of asymptomatic young members had bilateral globus pallidus calcification. A novel c.1086delC mutation in SLC20A2 gene has been identified in proband and 7 family members with intracranial calcification. The deletion mutation was not found in 2 family members without intracranial calcification and healthy controls members. There is no clear relationship between clinical symptoms and the severity of calcification in cerebral CT.
CONCLUSIONFamilial idiopathic basal ganglia calcification caused by the SLC20A2 gene mutation can manifest as juvenile onset paroxysmal kinesigenic dyskinesia. Further study should be done to validate the unrelated relationships between the severity of calcification in IBGC 3 cranial CT and clinical symptoms.
Adolescent ; Adult ; Basal Ganglia Diseases ; genetics ; Calcinosis ; genetics ; Child ; Female ; Humans ; Male ; Mutation ; Neurodegenerative Diseases ; genetics ; Sodium-Phosphate Cotransporter Proteins, Type III ; genetics ; Tomography, X-Ray Computed
3.MTHFR C677T Polymorphism as a Risk Factor for Vascular Calcification in Chronic Hemodialysis Patients.
So Young LEE ; Hoe Young KIM ; Kyung Mi PARK ; Stephen Yon LEE ; Seong Geun HONG ; Hyung Jong KIM ; Dong Ho YANG
Journal of Korean Medical Science 2011;26(3):461-465
Polymorphism of 5,10-methylenetetrahydrofolate reductase (MTHFR) C677T is one of the suggested risk factors for atherosclerosis. However, few studies have reported on the relationship between MTHFR C677T polymorphism and vascular calcification (VC) in chronic hemodialysis patients. We investigated the relationship between the MTHFR C677T polymorphism and VC in 152 chronic hemodialysis patients. Patients with a TT genotype exhibited significantly higher VC scores than patients expressing CC and CT (P = 0.002). The prevalence of peripheral vascular disease increased with the incidence of MTHFR C677T mutations for all patients, and the incidence of cerebrovascular accidents also increased with the presence of mutations for young patients (< or = 60 yr) (P < 0.05). Patients with CT and TT genotypes had adjusted odds ratios for VC of 1.39 and 1.58, respectively (P < 0.05). In summary, these data suggest that the MTHFR C677T polymorphism affects the degree of VC in chronic hemodialysis patients.
Aged
;
Calcinosis/*genetics
;
Genetic Predisposition to Disease
;
Humans
;
Kidney Failure, Chronic/*genetics
;
Methylenetetrahydrofolate Reductase (NADPH2)/*genetics
;
Middle Aged
;
*Polymorphism, Single Nucleotide
;
*Renal Dialysis
;
Risk Factors
;
Vascular Diseases/*genetics
4.Clinical Features of Primary Familial Brain Calcification in 17 Families.
Yuan-Tao HUANG ; Li-Hua ZHANG ; Mei-Fang LI ; Lin CHENG ; Jian QU ; Yu CHENG ; Xi LI ; Guo-Ying ZOU ; Hong-Hao ZHOU
Chinese Medical Journal 2018;131(24):2997-3000
5.A Novel Mutation Associated with Familial Idiopathic Basal Ganglia Calcification and Analysis of the Genotype-Phenotype Association in Chinese Patients.
Chinese Medical Journal 2018;131(7):799-803
BackgroundIdiopathic basal ganglia calcification (IBGC) is a genetic disorder characterized by bilateral basal ganglia calcification and neural degeneration. In this study, we reported a new SLC2OA2 mutation of IBGC and reviewed relevant literature to explore the association between phenotypes and genotypes in Chinese IBGC patients.
MethodsClinical information of the proband and her relatives were collected comprehensively. Blood samples of both the patient and her father were obtained, and genetic screening related to IBGC was performed using second generation sequencing with their consent. Findings were confirmed by Sanger sequencing. Polyphen-2 was used to predict the potential association between mutations and disease. Then, we retrieved literatures of Chinese IBGC patients and explored the association between phenotype and genotype.
ResultsA novel mutation was identified through genetic testing, and it is suggested to be a damage mutation predicted by Polyphen-2. Through literature review, we found that SLC20A2 mutation is the most common cause for IBGC in China. Its hot spot regions are mainly on the 1 and 8 exons; the second common one is PDGFB where the hot spot covered a length of 220-230 bp localized on the 2 exon; moreover, Chinese IBGC patients featured early-onset, more severe movement disorder and relatively mild cognitive impairment compared with those in other countries.
ConclusionsThere is significant heterogeneity both in phenotype and genotype in Chinese IBGC patients. Further research of pathogenic mechanism of IBGC is required to eventually develop precise treatment for individuals who suffered this disease.
Asian Continental Ancestry Group ; Basal Ganglia Diseases ; genetics ; Calcinosis ; genetics ; Exons ; genetics ; Female ; Genetic Association Studies ; Humans ; Male ; Mutation ; genetics ; Neurodegenerative Diseases ; genetics ; Pedigree ; Phenotype ; Sodium-Phosphate Cotransporter Proteins, Type III ; genetics
6.Clinical and genetic analysis of a family with Aicardi-Goutières syndrome and literature review.
Taoyun JI ; Jingmin WANG ; Huijuan LI ; Lirong ZHAO ; Yan SANG ; Ye WU
Chinese Journal of Pediatrics 2014;52(11):822-827
OBJECTIVEAicardi-Goutières syndrome (AGS) is a rare early-onset genetic encephalopathy. The aim of this study was to explore the clinical, imaging and genetic features of a family with AGS, which may contribute to definite diagnosis, genetic counseling and prenatal diagnosis of this rare disease in China. We summarized the characteristics of AGS through reviewing related references.
METHODInformation of the proband and other family members as well as their DNA samples were collected. All the exons and exon-intron boundaries of pathogenic genes were amplified with PCR and were directly sequenced for genomic DNA. And we reviewed the reports of 252 cases.
RESULT(1) The proband was a 6 years plus 7 months old boy. He presented with severe developmental delay and abnormal posture mainly as torsion of limbs. By physical examination he was found to have some chilblain-like skin lesions at the end of limbs and microcephaly. The CT scan of his head displayed multiple calcification, especially in the basal ganglia. The MRI of his head displayed a hypointense signal in T1-weighted (T1W) images and a hyperintense signal in T2-weighted (T2W) in cerebral white matter and cystic lesions in temporal white matter. The younger sister of the proband presented with chilblain-like skin lesions on her face and the end of limbs had no developmental delay. The CT of her head showed multiple calcification, especially in the basal ganglia. (2) Two mutations were identified in TREX1, one was a novel nonsense mutation (c.294_295insA), and the other was a known pathogenic mutation (c.868_885del). (3) The common performances of AGS included mental retardation [92% (231/252) ], dystonia [75% (189/252)], microcephaly [63% (159/252) ], chilblain [42% (106/252) ], basal ganglia calcification [100% (252/252)], brain atrophy[88% (222/252)] and cerebral white matter lesions [86% (217/252)]. TREX1 [38% (96/252) ] and RNASEH2B [23% (58/252)]are the most common pathogenic genes.
CONCLUSIONWe determined pathogenic gene of these patients which is the basis of genetic counseling for this family. c.294_295insA mutation is a novel mutation not reported around the world yet.
Atrophy ; Autoimmune Diseases of the Nervous System ; diagnosis ; genetics ; Calcinosis ; Child ; China ; Exodeoxyribonucleases ; genetics ; Exons ; genetics ; Genetic Testing ; Humans ; Magnetic Resonance Imaging ; Male ; Mutation ; Nervous System Malformations ; diagnosis ; genetics ; Pedigree ; Phosphoproteins ; genetics
7.An observation of taurine transport alterations in calcification of myocardial cells in vitro.
Yan-rong SHI ; Shu-heng WANG ; Ding-fang BU ; Yong-fen QI ; Lin GAO ; Yong-zheng PANG ; Chao-shu TANG
Acta Academiae Medicinae Sinicae 2002;24(4):359-363
OBJECTIVETo observe the alterations of taurine transport, taurine transporter (TAUT) and cysteine sulfinate decarboxylase (CSD) mRNA in the calcification of myocardial cells in vitro.
METHODS3H-taurine measured the amount of taurine uptake. TAUT and CSD mRNA consents were measured using competitive quantitative RT-PCR in cultured and calcified myocardial cells.
RESULTSIn calcification of myocardial cells, taurine concentration was decreased by 27% (P < 0.05), taurine uptake was markedly reduced, Vmax reduced by 39% (P < 0.01), there were no statistical significance of Km values between the two groups. TAUT mRNA decreased by 45% (P < 0.01), but CSD mRNA increased by 25% (P < 0.05).
CONCLUSIONSThe data suggest that there were impediment of taurine transport in calcification of myocardial cells, as TAUT mRNA level was decreased, but CSD mRNA concentration was improved.
Animals ; Biological Transport ; Calcinosis ; metabolism ; pathology ; Calcium ; metabolism ; Carboxy-Lyases ; metabolism ; Cells, Cultured ; Myocytes, Cardiac ; metabolism ; pathology ; RNA, Messenger ; metabolism ; Rats ; Taurine ; biosynthesis ; genetics ; metabolism
10.Mechanism of the Notch1 signaling pathway regulating osteogenic factor influences lumbar disc calcification.
China Journal of Orthopaedics and Traumatology 2023;36(5):473-479
OBJECTIVE:
To explore the mechanism of the Notch1 signaling pathway in regulating osteogenic factors and influencing lumbar disc calcification.
METHODS:
Primary annulus fibroblasts from SD rats were isolated and subcultured in vitro. The calcification-inducing factors bone morphogenetic protein-2 (BMP-2) and basic fibroblast growth factor (b-FGF) were added to separate groups to induce calcification, which were referred to as the BMP-2 group and the b-FGF group, respectively. A control group was also set up, which was cultured in normal medium. Subsequently, cell morphology and fluorescence identification, alizarin red staining, ELISA, and quantitative real-time polymerase chain reaction (QRT-PCR) were performed to determine the effect of calcification induction. Cell grouping was performed again, including the control group, the calcification group (adding the inducer BMP-2), the calcification + LPS group(adding the inducer BMP-2 and the Notch1 pathway activator LPS), and the calcification + DAPT group (adding the inducer BMP-2 and the Notch1 pathway inhibitor DAPT). Alizarin red staining and flow cytometry were used to detect cell apoptosis, ELISA was used to detect the content of osteogenic factors, and Western blot was used to detect the expression of BMP-2, b-FGF, and Notch1 proteins.
RESULTS:
The induction factor screening results showed that the number of mineralized nodules in fibroannulus cells in BMP-2 group and b-FGF group was significantly increased, and the increase was greater in the BMP-2 group Meanwhile, ELISA and Western blot results showed that BMP-2, b-FGF and mRNA expression levels of BMP-2, b-FGF and Notch1 in the induced group were significantly increased (P<0.01). The results of the mechanism of Notch1 signaling pathway affecting lumbar disc calcification showed that compared to calcified group, the number of fibroannulus cell mineralization nodules, apoptosis rate, BMP-2, b-FGF content, the expression levels of BMP-2, b-FGF, and Notch1 proteins were further increased significantly However, the number of mineralization nodules, apoptosis rate, BMP-2 and b-FGF levels, BMP-2, b-FGF and Notch1 protein expression levels were decreased in the calcified +DAPT group (P<0.05 or P<0.01).
CONCLUSION
Notch1 signaling pathway promotes lumbar disc calcification through positive regulation of osteogenic factors.
Animals
;
Rats
;
Bone Morphogenetic Protein 2/metabolism*
;
Calcinosis
;
Cell Differentiation
;
Cells, Cultured
;
Lipopolysaccharides
;
Osteogenesis
;
Rats, Sprague-Dawley
;
Receptor, Notch1/genetics*
;
Signal Transduction