1.Neuroprotective and mechanistic study of GJ-4 on okadaic acid-induced memory impairment in mice
Yang YANG ; Chan-juan SHENG ; Cai-xia ZANG ; Jun-mei SHANG ; Xiu-qi BAO ; Dan ZHANG
Acta Pharmaceutica Sinica 2023;57(12):3628-3636
GJ-4 is crocin enrichments extracted from
2.Mechanism of Non-receptor Tyrosine Kinase Src Regulating Neuroinflammation Through Phosphatase and Tensin Homology Protein in Microglia.
Sheng-Nan CAO ; Wen-Wen YU ; Cai-Xia ZANG ; Xiu-Qi BAO ; Hua SUN ; Dan ZHANG
Acta Academiae Medicinae Sinicae 2017;39(4):534-538
Objective To investigate the mechanism of non-receptor tyrosine kinase Src regulating neuroinflammation through phosphatase and tensin homology protein(PTEN)in microglia. Methods BV2 cells were incubated with PTEN inhibitor bpv(HOpic)for 2 hours,and then added with lipopolysaccharide(LPS)to induce neuroinflammation,Western blot was performed to determine the expression of phosphorylated protein kinase B(Akt)to investigate the activity of PTEN. Enzyme-linked immunosorben assay(ELISA)was used to determine the release of tumor necrosis factor α(TNF-α)to assess neuroinflammation.After PTEN inhibitor or Src specific small interfering RNA was added,the change of neuroinflammation was evaluated to study the mechanism of Src regulating neuroinflammation. Results LPS induced significant neuroinflammation in BV2 cells,as indicated by significantly increased expression of p-Akt and release of TNF-α(P<0.001).The PTEN inhibitor signficantly increased Akt phosphorylation(P<0.05)and TNF-α release(P<0.001)in LPS-induced BV2 cells compared to simply LPS-induced cells.The Src small interfering RNA significantly decreased the release of TNF-α(P<0.001)and inhibited PTEN(P<0.001)and Akt(P<0.001)phosphorylation. Conclusion Src kinase may regulate neuroinflammtion response in BV2 cells by regulating the phosphorylation of PTEN.
3.The role of neuroinflammation-related regulatory targets in the treatment for Parkinson's disease
Cai-xia ZANG ; Xiu-qi BAO ; Hua SUN ; Dan ZHANG
Acta Pharmaceutica Sinica 2016;51(5):677-
Parkinson's disease (PD) is a neurodegenerative disease characterized by the degeneration of dopaminergic neurons. The present therapeutic drugs for PD can only alleviate the patients' symptoms, but cannot prevent or delay progression of the disease. Great efforts have been made in the identification of new molecular targets that can prevent or delay the loss of dopaminergic neurons. Growing evidences support the key role of neuroinflammation in the pathogenesis of PD, featured by the activation of glial cells and many enzymes and receptors. This review will provide an overview of the enzymes and receptors closely related to neuroinflammation, which have a potential in the prevention or treatment of the disease.
4.Lipopolysaccharide potentiates dopaminergic neuronal dysfunction in α-synuclein transgenic mice
Yuan-peng ZHENG ; Cai-xia ZANG ; Lu WANG ; Han-yu YANG ; Hua SUN ; Xiu-qi BAO ; Dan ZHANG
Acta Pharmaceutica Sinica 2017;52(5):729-736
Parkinson's disease (PD) is the most prevalent neurodegenerative disorder, with several risk factors contributing to the onset, such as aging, genetics, oxidative stress and neuroinflammation. There are several PD animals that mimics different risk factor. α-Synuclein mutation mice and systemic lipopolysaccharide (LPS) injection mice are two kinds of most common animal models that replicate genetic mutation and neuroinflammation, respectively. However, in these two animal models, the pathogenesis occurred after a long period of stimulation. In the present study, four-month-old α-synucleintransgenic mice (A53T) were intraperitoneally injected with LPS once a week for continuous 8 weeks to simulate the inflammatory response. The behavioral results showed that the time of mice staying on the rod and the performance score were markedly decreased, indicating motor dysfunction. Dopaminergic neuronal function also decreased. It was noted that the movement dysfunction and pathological changes were aggravated in LPS plus α-synuclein challenged mice compared with LPS or α-synuclein stimulated alone, suggesting that the double attack had synergistic effects. Mechanistic study demonstrated that LPS and α-synuclein combined challenge led to obvious neuroinflammatory response and apoptosis, which might contribute to motor and dopaminergic neuronal dysfunction. In addition, differential proteomic study showed that the expression of CD99L2 and COX7RP significantly increased in the midbrain of LPS plus α-synuclein challenged mice, which were closely related to inflammation and apoptosis, and might be involved in the pathogenesis of PD. In conclusion, the present study demonstrated that LPS could potentiate dopaminergic neuronal function in α-synuclein transgenic mice, which might be an ideal method to develop PD animal model.