1.Integrated transcriptomics and metabolomics analysis of flavonoid biosynthesis in Ophiopogon japonicum under cadmium stress.
Song GAO ; Mengli QIU ; Qing LI ; Qian ZHAO ; Erli NIU
Chinese Journal of Biotechnology 2025;41(2):588-601
Ophiopogon japonicus, a precious medicinal plant endemic to Zhejiang Province. Its tuberous roots are rich in bioactive components such as flavonoids, possessing anti-inflammatory, antioxidant, and immunomodulatory properties. To elucidate the impact of cadmium (Cd) stress on the accumulation and biosynthetic pathway of flavonoids in O. japonicus, this study exposed O. japonicus to different concentrations of Cd stress and explored the changes through integrated transcriptomics and metabolomics analysis. The results demonstrated that Cd stress (1 mg/L and 10 mg/L) significantly increased the content of flavonoids in O. japonicus in a concentration-dependent manner. The metabolomics analysis revealed a total of 110 flavonoids including flavones, flavanols, flavonols, flavone and flavonol derivatives, flavanones, isoflavonoids, chalcones and dihydrochalcones, and anthocyanins in O. japonicus, among which flavones, flavonols, flavone and flavonol derivatives, and anthocyanins increased under Cd stress. The transcriptomics analysis identified several key flavonoid biosynthesis-associated genes with up-regulated expression under Cd stress, including 14 genes encoding 4-coumarate CoA ligase (4CL), 2 genes encoding chalcone isomerase (CHI), and 14 genes encoding phenylalanine ammonia lyase (PAL). The gene-metabolite regulatory network indicated significant positive correlations of 4CL (Cluster-21637.5012, Cluster-21637.90648, and Cluster-21637.62637) and CHI (Cluster-21637.111909 and Cluster-21637.123300) with flavonoid metabolites, suggesting that these genes promoted the synthesis of specific flavonoid metabolites, which led to the accumulation of total flavonoids under Cd stress. These findings provide theoretical support for the cultivation and utilization of medicinal plants in Cd-contaminated environments and offered new perspectives for studying plant responses to heavy metal stress.
Cadmium/toxicity*
;
Flavonoids/biosynthesis*
;
Metabolomics
;
Ophiopogon/drug effects*
;
Stress, Physiological
;
Transcriptome
;
Gene Expression Profiling
;
Gene Expression Regulation, Plant
2.Arbuscular mycorrhizal fungi improve physiological metabolism and ameliorate root damage of Coleus scutellarioides under cadmium stress.
Yanan HOU ; Fan JIANG ; Shuyang ZHOU ; Dingyin CHEN ; Yijie ZHU ; Yining MIAO ; Kai CENG ; Yifang WANG ; Min WU ; Peng LIU
Chinese Journal of Biotechnology 2025;41(2):680-692
Soil cadmium pollution can adversely affect the cultivation of the ornamental plant, Coleus scutellarioides. Upon cadmium contamination of the soil, the growth of C. scutellarioides is impeded, and it may even succumb to the toxic accumulation of cadmium. In this study, we investigated the effects of arbuscular mycorrhizal fungi (AMF) on the adaptation of C. scutellarioides to cadmium stress, by measuring the physiological metabolism and the degree of root damage of C. scutellarioides, with Aspergillus oryzae as the test fungi. The results indicated that cadmium stress increased the activity of superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT), and the content of malondialdehyde (MDA) and proline (Pro) within the cells of C. scutellarioides, but inhibited mycorrhizal infestation rate, root vigour and growth rate to a great degree. With the same cadmium concentration, the inoculation of AMF significantly improved the physiological indexes of C. scutellarioides. The maximum decrease of MDA content was 42.16%, and the content of secondary metabolites rosemarinic acid and anthocyanosides could be increased by up to 27.43% and 25.72%, respectively. Meanwhile, the increase of root vigour was as high as 35.35%, and the DNA damage of the root system was obviously repaired. In conclusion, the inoculation of AMF can promote the accumulation of secondary metabolites, alleviate root damage, and enhance the tolerance to cadmium stress in C. scutellarioides.
Cadmium/toxicity*
;
Mycorrhizae/physiology*
;
Plant Roots/drug effects*
;
Soil Pollutants/toxicity*
;
Stress, Physiological
;
Superoxide Dismutase/metabolism*
3.Identification of HMA gene family and response to cadmium stress in Ophiopogon japonicas.
Zhihui WANG ; Erli NIU ; Yuanliang GAO ; Qian ZHU ; Zihong YE ; Xiaoping YU ; Qian ZHAO ; Jun HUANG
Chinese Journal of Biotechnology 2025;41(2):771-790
Soil cadmium (Cd) pollution is one of the major environmental problems globally. Ophiopogon japonicus, a multifunctional plant extensively used in traditional Chinese medicine, has demonstrated potential in environmental remediation. This study investigated the Cd accumulation pattern of O. japonicus under cadmium stress and identified the heavy metal ATPase (HMA) family members in this plant. Our results demonstrated that O. japonicus exhibited a Cd enrichment factor (EF) of 2.75, demonstrating strong potential for soil Cd pollution remediation. Nine heavy metal ATPase (HMA) members of P1B-ATPases were successfully identified from the transcriptome data of O. japonicus, with OjHMA1-OjHMA6 classified as the Zn/Co/Cd/Pb-ATPases and OjHMA7-OjHMA9 as the Cu/Ag-ATPases. The expression levels of OjHMA1, OjHMA2, OjHMA3, and OjHMA7 were significantly up-regulated under Cd stress, highlighting their crucial roles in cadmium ion absorption and transport. The topological analysis revealed that these proteins possessed characteristic transmembrane (TM) segments of the family, along with functional A, P, and N domains involved in regulating ion absorption and release. Metal ion-binding sites (M4, M5, and M6) existed on the TM segments. Based on the number of transmembrane domains and the residues at metal ion-binding sites, the plant HMA family members were categorized into three subgroups: P1B-1 ATPases, P1B-2 ATPases, and P1B-4 ATPases. Specifically, the P1B-1 ATPase subgroup included the motifs TM4(CPC), TM5(YN[X]4P), and TM6(M[XX]SS); the P1B-2 ATPase subgroup featured the motifs TM4(CPC), TM5(K), and TM6(DKTGT); the P1B-4 ATPase subgroup contained the motifs TM4(SPC) and TM6(HE[X]GT), all of which were critical for protein functions. Molecular docking results revealed the importance of conserved sequences such as CPC/SPC, DKTGT, and HE[X]GT in metal ion coordination and stabilization. These findings provide potential molecular targets for enhancing Cd uptake and tolerance of O. japonicus by genetic engineering and lay a theoretical foundation for developing new cultivars with high Cd accumulation capacity.
Cadmium/metabolism*
;
Adenosine Triphosphatases/metabolism*
;
Ophiopogon/drug effects*
;
Soil Pollutants/toxicity*
;
Plant Proteins/metabolism*
;
Stress, Physiological
;
Multigene Family
;
Gene Expression Regulation, Plant
4.Research progress on metal pollutants inducing neurotoxicity through ferroptosis.
Ziyu QIN ; Yuqing CHEN ; Xinyuan ZHAO ; Shali YU
Journal of Zhejiang University. Medical sciences 2024;53(6):699-707
It has been confirmed that exposure to various metal pollutants can induce neurotoxicity, which is closely associated with the occurrence and development of neurological disorders. Ferroptosis is a form of cell death in response to metal pollutant exposure and it is closely related to oxidative stress, iron metabolism and lipid peroxidation. Recent studies have revealed that ferroptosis plays a significant role in the neurotoxicity induced by metals such as lead, cadmium, manganese, nickel, and antimony. Lead exposure triggers ferroptosis through oxidative stress, iron metabolism disorder and inflammation. Cadmium can induce ferroptosis through iron metabolism, oxidative stress and ferroptosis related signaling pathways. Manganese can promote ferroptosis through mitochondrial dysfunction, iron metabolism disorder and oxidative stress. Nickel can promote ferroptosis by influencing mitochondrial function, disrupting iron homeostasis and facilitating lipid peroxidation in the central nervous system. Antimony exposure can induce glutathione depletion by activating iron autophagy, resulting in excessive intracellular iron deposition and ultimately causing ferroptosis. This article reviews the effects of metal pollutants on ferroptosis-related indicators and discusses the specific mechanisms by which each metal triggers ferroptosis. It provides a reference for identifying targets for preventing neurotoxicity and for developing treatment strategies for neurological disorders.
Ferroptosis/drug effects*
;
Humans
;
Iron/metabolism*
;
Oxidative Stress/drug effects*
;
Neurotoxicity Syndromes/metabolism*
;
Cadmium/adverse effects*
;
Animals
;
Lipid Peroxidation/drug effects*
;
Metals/metabolism*
;
Lead/adverse effects*
;
Environmental Pollutants/toxicity*
;
Manganese/adverse effects*
;
Nickel/adverse effects*
;
Mitochondria/drug effects*
;
Signal Transduction/drug effects*
5.Epidemiological research progress in the effects of metal exposure on kidney.
Xiping YI ; Minxue SHEN ; Fei YANG
Journal of Central South University(Medical Sciences) 2023;48(4):601-607
Chronic kidney disease (CKD) is suffered progressive loss of kidney function lasting more than 3 months and is classified according to the degree of kidney damage (level of proteinuria) and the decreased glomerular filtration rate (GFR). The most severe form of CKD is end-stage renal disease. The prevalence of CKD is high with fast growth rate and the disease burden has become increasingly serious. CKD has become an important public health problem threatening human health. The etiology of CKD is complex. In addition to genetic factors, environmental factors are an important cause of CKD. With the development of industrialization, environmental metal pollution has become increasingly severe, and its impact on human health has received widespread attention. A large number of studies have shown that metals such as lead, cadmium, and arsenic can accumulate in the kidney, which can cause damage to the structure and function of the kidney, and play an important role in the development of CKD. Therefore, summarizing the epidemiological research progress in the relationship between arsenic, cadmium, lead, and other metal exposures and kidney diseases can provide new ideas for the prevention and control of kidney diseases caused by metal exposure.
Humans
;
Cadmium/toxicity*
;
Arsenic/toxicity*
;
Kidney
;
Renal Insufficiency, Chronic/epidemiology*
;
Kidney Failure, Chronic
6.Oral Cadmium Intake Enhances Contact Allergen-induced Skin Reaction in Rats.
Dina TUCOVIC ; Jelena KULAS ; Ivana MIRKOV ; Dusanka POPOVIC ; Lidija ZOLOTAREVSKI ; Marta DESPOTOVIC ; Milena KATARANOVSKI ; Popov Aleksandrov ALEKSANDRA
Biomedical and Environmental Sciences 2022;35(11):1038-1050
OBJECTIVE:
The effect of oral cadmium (Cd) intake to influence contact skin allergies was examined, since it is known that Cd is a heavy metal that affects many tissues, including the skin, in which it disturbs homeostasis, thus resulting in inflammation and injury.
METHODS:
Male rats were evoked with experimental contact hypersensitivity reaction (CHS) to hapten dinitrochlorobenzene (DNCB), after prolonged (30 day) oral exposure to an environmentally relevant Cd dose (5 ppm). The ear cell population was analyzed with flow cytometry. Cytokine production by ear skin cells and the activity of skin-draining lymph node (DLN) cells were measured using enzyme-linked immunosorbent assay (ELISA).
RESULTS:
Orally acquired Cd (5 ppm) increased CHS intensity only in Dark Agouti (DA) rats by affecting inflammatory responses in both the sensitization (an increase of IFN-γ and IL-17 cytokine production) and challenge (an increase of CD8 + and CD4 + cell number and TNF, IFN-γ and IL-17 cytokine production) phases. An increased CHS reaction was seen in Albino Oxford (AO) rats only at a high Cd dose (50 ppm), during the challenge phase (an increase of CD8 + and CD4 + cell number and TNF, IFN-γ and IL-17 cytokine production).
CONCLUSION
These novel data indicate that oral Cd intensifies the skin response to sensitizing chemicals such as DNCB.
Male
;
Rats
;
Animals
;
Allergens/toxicity*
;
Cadmium/toxicity*
;
Dinitrochlorobenzene/toxicity*
;
Interleukin-17
;
Cytokines
7.Celastrol inhibits neurotoxicity induced by Cd2.
Fei HE ; Yuan LIU ; Susu LIU ; Na WANG ; Haihong SONG ; Guoliang XIONG ; Jiandong LU ; Changyuan YU ; Shihui WANG
Chinese Journal of Biotechnology 2022;38(9):3443-3452
Cadmium (Cd) is a common heavy metal in the environment. Cd2+ may penetrate the blood-brain barrier and produce neurotoxicity, thus inducing various neurodegenerative diseases. Celastrol is an effective component of Tripterygium wilfordii Hook. F., which has many pharmacological effects such as anti-cancer and anti-inflammatory. Here we explored the effect of celastrol on the corresponding neurotoxicity induced by Cd2+. Cell proliferation test, cell membrane integrity test, and cell morphology were observed to analyze the effect of Cd2+ on the viability of HMC3. The neurotoxicity of Cd2+ and the effect of celastrol on the corresponding neurotoxicity induced by Cd2+ were analyzed by nitric oxide (NO) test, lipid peroxidation (MDA) test, and Western blotting. When the concentration of Cd2+ reached 40 μmol/L, the inhibition rate of HMC3 cell proliferation was (57.17±8.23)% (P < 0.01, n=5), compared with the control group. The cell activity continued to reduce when the Cd2+ concentration further increased. When the concentration of Cd2+ was higher than 40 μmol/L, the cell membrane of HMC3 was significantly damaged, and the damage was dose-dependent. Upon increasing the Cd2+ concentration, the cell morphology began to change and the adhesion also became worse. Cd2+ significantly increased the amount of NO released by HMC3 cells, while celastrol effectively inhibited the NO release of HMC3 cells induced by Cd2+. Cd2+ greatly increased the release of MDA in HMC3 cells, and the level of MDA decreased rapidly upon the addition of 10-7 mol/L celastrol. Cd2+ increased the expression of p-PI3K protein, and the levels of p-PI3K protein and p-AKT protein were inhibited by the addition of celastrol (10‒7 mol/L, 10‒6 mol/L), thus preventing cell apoptosis. In conclusion, celastrol inhibits Cd2+ induced microglial cytotoxicity and plays a neuroprotective role.
Anti-Inflammatory Agents/pharmacology*
;
Apoptosis
;
Cadmium/toxicity*
;
Nitric Oxide/pharmacology*
;
Pentacyclic Triterpenes
;
Phosphatidylinositol 3-Kinases
;
Proto-Oncogene Proteins c-akt/metabolism*
;
Triterpenes/pharmacology*
8.Effects of vitamin C on antioxidant function of testis in cadmium-loaded mice.
Jian ZHOU ; Hao QIN ; Xiao-Hong LI ; Yong-Hui WANG
Chinese Journal of Applied Physiology 2022;38(3):233-237
Objective: To investigate the effects of cadmium (Cd) on antioxidant enzymes in testis of mice and the protective effect of vitamin C (VC). Methods: A total of 72 male Kunming mice of clean grade were divided into four groups (n=18): the control group, the Cd group (CdCl2 3 mg/kg), the VC group (200 mg/kg), and the VC (200 mg/kg) +Cd group (CdCl2 3 mg/kg). Mice were poisoned once a day, exposed for 1 and 3 days and were treated with VC at the same time. Twenty-four hours after exposure on the 1st and 3rd day, half of the mice in each group were weighed, the serum and testis tissues were collected. Testicular organ coefficient, malondialdehyde (MDA) and superoxide dismutase (SOD) in serum and testis tissues, and glutathione peroxidase (GSH-Px), reduced glutathione (GSH), oxidized glutathione (GSSG) and total glutathione (T-GSH) in testis tissues were detected. Results: Compared with the control group, the body weight and testicle organ coefficient of mice in the Cd group were decreased on the 1st and 3rd day; after 3 days of exposure, the serum SOD in the Cd group was decreased significantly and MDA was increased significantly (P<0.05); the levels of SOD, GSH-Px, T-GSH and GSH/GSSG of testis in the Cd group were increased significantly on the 1st day (P<0.05), while all the above indexes were decreased significantly on the 3rd day (P<0.05), and the content of MDA was increased significantly on the 1st and 3rd days in the Cd group (P<0.05); after VC treatment, the degree of reduction was decreased. Compared with the Cd group, the serum SOD and MDA levels in the VC+ Cd group were significantly different after 3 days of exposure (P<0.05); the changes of SOD, GSH-Px, T-GSH and GSH/GSSG levels of the testis in the VC+ Cd group were significantly different on the 1st and 3rd day of exposure (P<0.05), and the MDA level of the testis in the VC+ Cd group was decreased significantly on the 3rd day of exposure (P<0.05). Compared with the Cd group for 1 day, the level of serum SOD exposed for 3 days was decreased significantly (P<0.05), and the changes of testis indexes were also significantly different (P<0.05). Conclusion: VC treatment can improve the antioxidant function of cadmium-loaded mice to some extent, and has protective effect on oxidative damage of testis.
Animals
;
Antioxidants/pharmacology*
;
Ascorbic Acid/pharmacology*
;
Cadmium/toxicity*
;
Glutathione
;
Glutathione Disulfide/pharmacology*
;
Glutathione Peroxidase
;
Male
;
Superoxide Dismutase
;
Testis
9.Oyster Protein Hydrolysate Alleviates Cadmium Toxicity by Restoring Cadmium-Induced Intestinal Damage and Gut Microbiota Dysbiosis in Mice via Its Abundance of Methionine, Tyrosine, and Glutamine.
Jing Wen WANG ; Zhi Jia FANG ; Yong Bin LI ; Lin Ru HUANG ; Li Jun SUN ; Ying LIU ; Ya Ling WANG ; Jian Meng LIAO
Biomedical and Environmental Sciences 2022;35(7):669-673
10.Cadmium induces apoptosis of mouse spermatocytes (GC-2 spd) by promoting mitochondrial fission.
Ding Yu HUANG ; Lan MA ; Ling Lu LYU ; Lian HU ; Ling ZHANG ; Yun Hao LIU
Chinese Journal of Industrial Hygiene and Occupational Diseases 2022;40(11):807-812
Objective: To study the underlying mechanism of cadmium-induced apoptosis of mouse spermatocytes (GC-2 spd) . Methods: In March 2021, GC-2 spd cells were exposed to different concentrations of CdCl(2) for 24 hours, namely 5 μmol/L CdCl(2) (low-dose) group and 10 μmol/L CdCl(2) (high-dose) group, and unexposed GC-2 spd cells were used as control group. Mitochondrial morphology was observed in the cells stained with Mito-Track Red CMXRos fluorescent probes by confocal microscopy and the mitochrondrial membrane potential was measured by flow cytometry with JC-1 fluorescent probes. Mitochrondrial proteins, cytosolic proteins and total cellular proteins of GC-2 spd cells were extracted using cell mitochondria isolation kit and RIPA buffer, respectively. The expression of mitochondrial homeostasis regulatory proteins (FIS1 and OPA1), and apoptosis-related proteins (Cytochrome c and cleaved Caspase-3) were examined by Western blot. Results: Compared with the cells in the control group, the relative ratio of JC-1 red/green fluorescence signal in the cells of the low-dose and high-dose CdCl(2) groups decreased significantly (0.740±0.071, 0.570±0.028), with a statistically significant difference (P=0.017, 0.004) ; The morphology of mitochondria changed from long tube to point, and the proportion of cells containing point mitochondria increased significantly (45.1%±3.7% and 25.7%±4.9%), the difference was statistically significant (P=0.005, 0.001) ; The relative expression level of mitochondrial FIS1 in cells of low and high dose CdCl(2) groups was significantly higher (1.271±0.120, 1.693±0.155), the difference was statistically significant (P=0.046, 0.000) ; The relative expression level of OPA1 decreased significantly (0.838±0.050, 0.682±0.040), and the difference was statistically significant (P=0.049, 0.001). Compared with the control group, the relative expression level of cytochrome c protein in the cytoplasm of cells in the low dose group of CdCl(2) was not significantly increased (1.249±0.151), and the difference was not statistically significant (P=0.075). However, the relative expression level in the cytoplasm of cells in the high dose group of CdCl(2) was significantly increased (2.355±0.110), and the difference was statistically significant (P=0.000) ; The relative expression level of Cytochrome c in mitochondria of low and high dose CdCl(2) groups decreased significantly (0.681±0.043, 0.619±0.114), with a statistically significant difference (P=0.004, 0.001) ; Moreover, the level of cleaved Caspase-3 protein in cells gradually increased (5.486±0.544, 11.493±1.739), the difference was statistically significant (P=0.004, 0.000) . Conclusion: Cadmium induced cleaved Caspase-3 mediated apoptosis of GC-2 spd cells via promoting mitochrondrial fission and the release of Cytochrome c from the mitochrondria to the cytosol.
Male
;
Mice
;
Animals
;
Mitochondrial Dynamics
;
Caspase 3/metabolism*
;
Cadmium/toxicity*
;
Cytochromes c/metabolism*
;
Fluorescent Dyes
;
Apoptosis
;
Apoptosis Regulatory Proteins/metabolism*
;
Membrane Potential, Mitochondrial

Result Analysis
Print
Save
E-mail