1.Molecular engineering and immobilization of lysine decarboxylase for synthesis of 1, 5-diaminopentane: a review.
Chinese Journal of Biotechnology 2022;38(12):4403-4419
1, 5-diaminopentane, also known as cadaverine, is an important raw material for the production of biopolyamide. It can be polymerized with dicarboxylic acid to produce biopolyamide PA5X whose performances are comparable to that of the petroleum-based polyamide materials. Notably, biopolyamide uses renewable resources such as starch, cellulose and vegetable oil as substrate. The production process does not cause pollution to the environment, which is in line with the green and sustainable development strategy. The biosynthesis of 1, 5-diaminopentane mainly includes two methods: the de novo microbial synthesis and the whole cell catalysis. Lysine decarboxylase as the key enzyme for 1, 5-diaminopentane production, mainly includes an inducible lysine decarboxylase CadA and a constituent lysine decarboxylase LdcC. Lysine decarboxylase is a folded type Ⅰ pyridoxal-5' phosphate (PLP) dependent enzyme, which displays low activity and unstable structure, and is susceptible to deactivation by environmental factors in practical applications. Therefore, improving the catalytic activity and stability of lysine decarboxylase has become a research focus in this field, and molecular engineering and immobilization are the mainly approaches. Here, the mechanism, molecular engineering and immobilization strategies of lysine decarboxylase were reviewed, and the further strategies for improving its activity and stability were also prospected, with the aim to achieve efficient production of 1, 5-diaminopentane.
Escherichia coli/metabolism*
;
Carboxy-Lyases/metabolism*
;
Catalysis
;
Cadaverine/metabolism*
2.Progress in biosythesis of diaminopentane.
Dongxia LI ; Ming LI ; Hongxin WANG ; Shuya WANG ; Fuping LU
Chinese Journal of Biotechnology 2014;30(2):161-174
Air pollution and global warming are increasingly deteriorating. Large amounts of polyamides derived from fossil fuel sources are consumed around the world. Cadaverine is an important building monomer block of bio-based polyamides, thus biotechnological processes for these polymers possess enormous ecological and economical potential. Currently, the engineered strains for biological production of cadaverine are Corynebacterium glutamicum and Escherichia coli. We review here the latest research progress of biosynthesis of cadaverine including metabolism of cadaverine in microorganisms, key enzymes and transport proteins in cadaverine synthesis pathway, optimum pathways and cadaverine yields.
Biosynthetic Pathways
;
Biotechnology
;
Cadaverine
;
biosynthesis
;
Corynebacterium glutamicum
;
metabolism
;
Escherichia coli
;
metabolism
3.Heterologous expression and characterization of Klebsiella oxytoca lysine decarboxylase.
Naiqiang LI ; Lijun YU ; Yan XU
Chinese Journal of Biotechnology 2016;32(4):527-531
Cadaverine is a biogenic amine that has the potential to become an important platform chemical for the production of industrial polymers, such as polyamides and polyurethanes. We reported here a lysine decarboxylase from Klebsiella oxytoca. The lysine decarboxylase from Klebsiella oxytoca was cloned to Escherichia coli to get the strain LN18. The specific activity of the crude protein from LN18 reached 30 000 U. The molecular weight was about 80 kDa. The optimum temperature and pH of the crude protein were 55 ℃ and 5.5 respectively. The specific activity could keep over 30% at pH 8.0 compared the one at pH 5.5, much difference from Escherichia coli lysine decarboxylase CadA. Mg²⁺ was positive to the specific activity, whereas Fe²⁺, Zn²⁺ and Ca²⁺ were negative.
Bacterial Proteins
;
genetics
;
metabolism
;
Cadaverine
;
Carboxy-Lyases
;
genetics
;
metabolism
;
Escherichia coli
;
metabolism
;
Hydrogen-Ion Concentration
;
Klebsiella oxytoca
;
enzymology
;
genetics
;
Temperature
4.Urinary Polyamine Profiles and Benign Prostatic Hyperplasia.
Sung Joon HONG ; Byung Ha CHUNG ; Ja Won SEO ; Bong Chul CHUNG ; Dong Soo PARK ; Dong Hyeon LEE
Korean Journal of Urology 1996;37(12):1398-1403
Polyamines are non-specific marker of cellular proliferation in many malignant tumors, and it is also increase in certain benign conditions. We measured the urinary polyamines to investigate the possibility as a marker of abnormal prostate growth and the correlation with various clinical parameters. Urinary polyamine concentrations in 27 cases of symptomatic benign prostatic hyperplasia (BPH) were compared with those in 32 cases of age matched normal controls. Urinary concentration of polyamine profiles were quantitatively determined by Gas Chromatography/Nitrogen Phosphorus Detector and they were calculated by the correction of gram creatinine. The concentrations of N-acetyl putrescine, N-acetyl cadaverine, spermidine(spd), N1-acetyl spermidine, N8-acetyl spermidine, and spermine(spm) showed significant increase in BPH compared with normal control(all p<0.05). Level of serum prostate specific antigen(PSA) in BPH patients was negatively correlated with the concentration of urinary spermidine(p=0.049). And the ratio of spm/spd correlated with the level of prostate volume(p=0.046). No significant correlations was found between other clinical parameters such as age, level of hemoglobin or erythrocyte count with polyamine profiles concentration. These data suggested that urinary concentration of polyamines in BPH are elevated compared with those in normal control. Altered regulation of the biosynthesis and metabolism of spermidine and spermine may be involved in BPH.
Cadaverine
;
Cell Proliferation
;
Creatinine
;
Erythrocyte Count
;
Humans
;
Metabolism
;
Phosphorus
;
Polyamines
;
Prostate
;
Prostate-Specific Antigen
;
Prostatic Hyperplasia*
;
Putrescine
;
Spermidine
;
Spermine
5.Determination and correlation analysis of contents of putrescine, cadaverine, and histamine in necrotic tissue, blood, and urine of patients with diabetic foot.
Si-rong LIU ; Xin-zhou RONG ; Gui-cheng FAN ; Qing-hui LI ; Ya-ming WEI
Chinese Journal of Burns 2013;29(6):526-530
OBJECTIVETo determine and perform a correlation analysis of the contents of putrescine, cadaverine, and histamine in necrotic tissue, blood, and urine of patients with diabetic foot (DF).
METHODSTen patients with severe wet necrotizing DF hospitalized from January 2011 to January 2012 were assigned as group DF, and 10 orthopedic patients with scar but without diabetes or skin ulcer hospitalized in the same period were assigned as control group. Samples of necrotic tissue from feet of patients in group DF and normal tissue from extremities of patients in control group, and samples of blood and 24-hour urine of patients in both groups were collected, and the amount of each sample was 10 mL. Contents of putrescine, cadaverine, and histamine were determined with high performance liquid chromatography-mass spectrometry. The data got from the determination of blood and urine were processed with t test, and those from necrotic or normal tissue with Wilcoxon rank sum test. The correlation of contents of polyamines between necrotic tissue and blood, blood and urine were processed with simple linear regression analysis.
RESULTS(1) Contents of putrescine, cadaverine, and histamine in the necrotic tissue of group DF were (186.1 ± 26.8), (78.553 ± 12.441), (33 ± 10) mg/kg, which were significantly higher than those in normal tissue of control group [(2.2 ± 1.2), (1.168 ± 0.014), 0 mg/kg, with Z values respectively -3.780, -3.781, -4.038, P values all below 0.01]. The content of putrescine in necrotic tissue of group DF was significantly higher than those of cadaverine and histamine (with Z values respectively -3.780, -3.630, P values all below 0.01). (2) Contents of putrescine, cadaverine, and histamine in the blood of group DF were (0.075 ± 0.013), (0.022 ± 0.003), (0.052 ± 0.014) mg/L, and they were significantly higher than those in the blood of control group [(0.014 ± 0.009), (0.013 ± 0.003), (0.016 ± 0.008) mg/L, with t values respectively 6.591, 2.207, 3.568, P < 0.05 or P<0.01]. The content of putrescine in the blood of group DF was significantly higher than those of cadaverine and histamine (with t values respectively 13.204, 3.096, P values all below 0.01). (3) Contents of putrescine, cadaverine, and histamine in the urine of group DF were (0.735 ± 0.088), (0.450 ± 0.012), (0.1623 ± 0.0091) mg/L, and only the contents of putrescine and cadaverine were significantly higher than those in the urine of control group [(0.050 ± 0.014), (0.035 ± 0.007) mg/L, with t values respectively 3.270, 4.705, P<0.05 or P<0.01]. The content of putrescine in the urine of group DF was significantly higher than that of cadaverine (t = 6.686, P < 0.01). (4) There were significant and positive correlations in contents of putrescine, cadaverine, and histamine between necrotic tissue and blood in patients of group DF (with r values respectively 0.981, 0.994, 0.821, P values all below 0.01). There were no significant correlations in contents of putrescine, cadaverine, and histamine between blood and urine in patients of group DF (with r values respectively 0.150, 0.239, 0.177, P values all above 0.05).
CONCLUSIONSPutrescine, cadaverine, and histamine exist in the necrotic tissue of patients with DF in high concentrations, among which putrescine predominates. These polyamines can be absorbed into the blood through wound and excreted through the urine.
Adult ; Aged ; Cadaverine ; blood ; metabolism ; urine ; Case-Control Studies ; Diabetic Foot ; blood ; metabolism ; urine ; Female ; Histamine ; blood ; metabolism ; urine ; Humans ; Male ; Middle Aged ; Necrosis ; Putrescine ; blood ; metabolism ; urine