1.Influence of the severity and treatment of allergic rhinitis and asthma on SARS-CoV-2 infection.
Chinese Journal of Preventive Medicine 2023;57(8):1171-1175
Coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has affected 660 million people and resulted in 6.7 million deaths. At present, a variety of risk factors related to the severity of COVID-19 have been identified, but whether allergic rhinitis and asthma will affect SARS-CoV-2 infection remains controversial. In general, there is no sufficient evidence to support that allergic rhinitis or asthma is a risk factor for increasing the rate of SARS-CoV-2 infection or aggravating the disease. Some studies even show that atopy may be a protective factor to alleviate SARS-CoV-2 infection, which is related to the decreased expression of angiotensin-converting enzyme 2, the receptor required for SARS-CoV-2 to enter cells, in atopic individuals. This paper reviews the influence of the severity and treatment of allergic rhinitis and asthma on SARS-CoV-2 infection, in order to provide some references for establishing strategies for prevention, risk stratification and treatment of COVID-19.
Humans
;
COVID-19
;
SARS-CoV-2/metabolism*
;
Peptidyl-Dipeptidase A/metabolism*
;
Asthma/therapy*
;
Rhinitis, Allergic
2.Fucoidan sulfate from Sargassum fusiforme regulates the SARS-CoV-2 receptor AXL expression in human embryonic lung diploid fibroblast cells.
Xuqiang ZHOU ; Weihua JIN ; Di JIANG ; Yipeng XU ; Sanying WANG ; Xinna WU ; Yunchuang CHANG ; Huili SU ; Tianjun ZHU ; Xiaogang XU ; Genxiang MAO
Journal of Zhejiang University. Science. B 2023;24(11):1047-1052
新冠病毒感染疫情严重威胁着世界各国人民的生命健康。目前,对病毒感染的防治研究主要集中在抑制病毒与分子受体的结合上。AXL作为新发现的严重急性呼吸综合征冠状病毒2型(SARS-CoV-2)受体,在协助病毒感染人体呼吸系统中发挥着重要作用,是未来临床干预的潜在靶点。本研究对已发表的单细胞测序数据进行整理和分析,发现AXL在年轻人肺细胞中的表达水平明显高于老年人。人胚肺二倍体成纤维细胞(2BS)是衰老研究的公认细胞株。本文采用2BS细胞构建复制性细胞衰老模型,发现年轻细胞中AXL的蛋白水平明显高于衰老细胞,据此推测年轻人感染的风险可能更高,需要注意防护。我们发现一种羊栖菜褐藻多糖硫酸酯组分(SFW-3)可显著下调年轻2BS细胞中AXL的表达水平,表明SFW-3具有一定的抗SARS-CoV-2感染的研究价值,同时表明2BS细胞株也可作为潜在的SARS-CoV-2体外感染模型。
Humans
;
SARS-CoV-2
;
Sargassum/metabolism*
;
Diploidy
;
Sulfates/metabolism*
;
COVID-19
;
Polysaccharides/pharmacology*
;
Lung
3.Influence of the severity and treatment of allergic rhinitis and asthma on SARS-CoV-2 infection.
Chinese Journal of Preventive Medicine 2023;57(8):1171-1175
Coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has affected 660 million people and resulted in 6.7 million deaths. At present, a variety of risk factors related to the severity of COVID-19 have been identified, but whether allergic rhinitis and asthma will affect SARS-CoV-2 infection remains controversial. In general, there is no sufficient evidence to support that allergic rhinitis or asthma is a risk factor for increasing the rate of SARS-CoV-2 infection or aggravating the disease. Some studies even show that atopy may be a protective factor to alleviate SARS-CoV-2 infection, which is related to the decreased expression of angiotensin-converting enzyme 2, the receptor required for SARS-CoV-2 to enter cells, in atopic individuals. This paper reviews the influence of the severity and treatment of allergic rhinitis and asthma on SARS-CoV-2 infection, in order to provide some references for establishing strategies for prevention, risk stratification and treatment of COVID-19.
Humans
;
COVID-19
;
SARS-CoV-2/metabolism*
;
Peptidyl-Dipeptidase A/metabolism*
;
Asthma/therapy*
;
Rhinitis, Allergic
5.Effects of bioactive compounds from Pleurotus mushrooms on COVID-19 risk factors associated with the cardiovascular system.
Eduardo Echer DOS REIS ; Paulo Cavalheiro SCHENKEL ; Marli CAMASSOLA
Journal of Integrative Medicine 2022;20(5):385-395
Mushrooms are a group of fungi with great diversity and ultra-accelerated metabolism. As a consequence, mushrooms have developed a protective mechanism consisting of high concentrations of antioxidants such as selenium, polyphenols, β-glucans, ergothioneine, various vitamins and other bioactive metabolites. The mushrooms of the Pleurotus genus have generated scientific interest due to their therapeutic properties, especially related to risk factors connected to the severity of coronavirus disease 2019 (COVID-19). In this report, we highlight the therapeutic properties of Pleurotus mushrooms that may be associated with a reduction in the severity of COVID-19: antihypertensive, antihyperlipidemic, antiatherogenic, anticholesterolemic, antioxidant, anti-inflammatory and antihyperglycemic properties. These properties may interact significantly with risk factors for COVID-19 severity, and the therapeutic potential of these mushrooms for the treatment or prevention of this disease is evident. Besides this, studies show that regular consumption of Pleurotus species mushrooms or components isolated from their tissues is beneficial for immune health. Pleurotus species mushrooms may have a role in the prevention or treatment of infectious diseases either as food supplements or as sources for pharmacological agents.
Agaricales
;
Antioxidants/pharmacology*
;
COVID-19/drug therapy*
;
Cardiovascular System
;
Pleurotus/metabolism*
;
Risk Factors
6.A review on the role of angiotensin-converting enzyme 2 in children with coronavirus disease 2019.
Jing LIU ; Guo-Qian CHEN ; Li WEI ; Fu-Yong JIAO
Chinese Journal of Contemporary Pediatrics 2020;22(12):1344-1348
With the spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) all over the world, there is an increasing number of children with such infection. Angiotensin-converting enzyme 2 (ACE2), one of the binding sites for SARS-CoV-2 infection in humans, can bind to viral spike proteins, allowing transmembrane serine protease (TMPRSS2) to activate S-protein to trigger infection and induce the production of various inflammatory factors such as interleukin-1, interferon-l, and tumor necrosis factor. Compared with adults, children tend to have lower expression levels of ACE2 and TMPRSS2, which are presumed to be associated with milder symptoms and fewer cases in children. The article summarizes the research advances in the role of ACE2 during SARS-CoV-2 infection, in order to help understand the pathogenic mechanism of SARS-CoV-2 and provide a reference for better development of drugs and vaccines to prevent and treat coronavirus disease 2019 in children.
Angiotensin-Converting Enzyme 2/metabolism*
;
COVID-19
;
Child
;
Humans
;
Receptors, Virus/metabolism*
;
SARS-CoV-2
;
Serine Endopeptidases/metabolism*
7.SARS-CoV-2 impairs the disassembly of stress granules and promotes ALS-associated amyloid aggregation.
Yichen LI ; Shuaiyao LU ; Jinge GU ; Wencheng XIA ; Shengnan ZHANG ; Shenqing ZHANG ; Yan WANG ; Chong ZHANG ; Yunpeng SUN ; Jian LEI ; Cong LIU ; Zhaoming SU ; Juntao YANG ; Xiaozhong PENG ; Dan LI
Protein & Cell 2022;13(8):602-614
The nucleocapsid (N) protein of SARS-CoV-2 has been reported to have a high ability of liquid-liquid phase separation, which enables its incorporation into stress granules (SGs) of host cells. However, whether SG invasion by N protein occurs in the scenario of SARS-CoV-2 infection is unknow, neither do we know its consequence. Here, we used SARS-CoV-2 to infect mammalian cells and observed the incorporation of N protein into SGs, which resulted in markedly impaired self-disassembly but stimulated cell cellular clearance of SGs. NMR experiments further showed that N protein binds to the SG-related amyloid proteins via non-specific transient interactions, which not only expedites the phase transition of these proteins to aberrant amyloid aggregation in vitro, but also promotes the aggregation of FUS with ALS-associated P525L mutation in cells. In addition, we found that ACE2 is not necessary for the infection of SARS-CoV-2 to mammalian cells. Our work indicates that SARS-CoV-2 infection can impair the disassembly of host SGs and promote the aggregation of SG-related amyloid proteins, which may lead to an increased risk of neurodegeneration.
Amyloidogenic Proteins/metabolism*
;
Amyotrophic Lateral Sclerosis/genetics*
;
Animals
;
COVID-19
;
Cytoplasmic Granules/metabolism*
;
Mammals
;
SARS-CoV-2
;
Stress Granules
9.Study on treatment of "cytokine storm" by anti-2019-nCoV prescriptions based on arachidonic acid metabolic pathway.
Yue REN ; Mei-Cun YAO ; Xiao-Qian HUO ; Yu GU ; Wei-Xing ZHU ; Yan-Jiang QIAO ; Yan-Ling ZHANG
China Journal of Chinese Materia Medica 2020;45(6):1225-1231
Since the outbreak of 2019-nCoV, the epidemic has developed rapidly and the situation is grim. LANCET figured out that the 2019-nCoV is closely related to "cytokine storm". "Cytokine storm" is an excessive immune response of the body to external stimuli such as viruses and bacteria. As the virus attacking the body, it stimulates the secretion of a large number of inflammatory factors: interleukin(IL), interferon(IFN), C-X-C motif chemokine(CXCL) and so on, which lead to cytokine cascade reaction. With the exudation of inflammatory factors, cytokines increase abnormally in tissues and organs, interfering with the immune system, causing excessive immune response of the body, resulting in diffuse damage of lung cells, pulmonary fibrosis, and multiple organ damage, even death. Arachidonic acid(AA) metabolic pathway is principally used to synthesize inflammatory cytokines, such as monocyte chemotactic protein 1(MCP-1), tumor necrosis factor(TNF), IL, IFN, etc., which is closely related to the occurrence, development and regression of inflammation. Therefore, the inhibition of AA metabolism pathway is benefit for inhibiting the release of inflammatory factors in the body and alleviating the "cytokine storm". Based on the pharmacophore models of the targets on AA metabolic pathway, the traditional Chinese medicine database 2009(TCMD 2009) was screened. The potential herbs were ranked by the number of hit molecules, which were scored by pharmacophore fit value. In the end, we obtained the potential active prescriptions on "cytokine storm" according to the potential herbs in the "National novel coronavirus pneumonia diagnosis and treatment plan(trial version sixth)". The results showed that the hit components with the inhibitory effect on AA were magnolignan Ⅰ, lonicerin and physcion-8-O-β-D-glucopy-ranoside, which mostly extracted from Magnoliae Officinalis Cortex, Zingiberis Rhizoma Recens, Lonicerae Japonicae Flos, Rhei Radix et Rhizoma, Salviae Miltiorrhizae Radix et Rhizoma, Scutellariae Radix, Gardeniae Fructus, Ginseng Radix et Rhizoma, Arctii Fructus, Dryopteridis Crassirhizomatis Rhizoma, Paeoniaeradix Rubra, Dioscoreae Rhizoma. Finally the anti-2019-nCoV prescriptions were analyzed to obtain the potential active prescriptions on AA metabolic pathway, Huoxiang Zhengqi Capsules, Jinhua Qinggan Granules, Lianhua Qingwen Capsules, Qingfei Paidu Decoction, Xuebijing Injection, Reduning Injection and Tanreqing Injection were found that may prevent 2019-nCoV via regulate cytokines. This study intends to provide reference for clinical use of traditional Chinese medicine to resist new coronavirus.
Arachidonic Acid/metabolism*
;
Betacoronavirus
;
COVID-19
;
Coronavirus Infections/immunology*
;
Cytokines/immunology*
;
Drugs, Chinese Herbal/pharmacology*
;
Humans
;
Medicine, Chinese Traditional
;
Metabolic Networks and Pathways
;
Pandemics
;
Pneumonia, Viral/immunology*
;
SARS-CoV-2
;
COVID-19 Drug Treatment
10.Single-cell analysis of angiotensin-converting enzyme II expression in human kidneys and bladders reveals a potential route of 2019 novel coronavirus infection.
Wei LIN ; Jue FAN ; Long-Fei HU ; Yan ZHANG ; Joshua D OOI ; Ting MENG ; Peng JIN ; Xiang DING ; Long-Kai PENG ; Lei SONG ; Rong TANG ; Zhou XIAO ; Xiang AO ; Xiang-Cheng XIAO ; Qiao-Ling ZHOU ; Ping XIAO ; Yong ZHONG
Chinese Medical Journal 2021;134(8):935-943
BACKGROUND:
Since 2019, a novel coronavirus named 2019 novel coronavirus (2019-nCoV) has emerged worldwide. Apart from fever and respiratory complications, acute kidney injury has been observed in a few patients with coronavirus disease 2019. Furthermore, according to recent findings, the virus has been detected in urine. Angiotensin-converting enzyme II (ACE2) has been proposed to serve as the receptor for the entry of 2019-nCoV, which is the same as that for the severe acute respiratory syndrome. This study aimed to investigate the possible cause of kidney damage and the potential route of 2019-nCoV infection in the urinary system.
METHODS:
We used both published kidney and bladder cell atlas data and new independent kidney single-cell RNA sequencing data generated in-house to evaluate ACE2 gene expression in all cell types in healthy kidneys and bladders. The Pearson correlation coefficients between ACE2 and all other genes were first generated. Then, genes with r values larger than 0.1 and P values smaller than 0.01 were deemed significant co-expression genes with ACE2.
RESULTS:
Our results showed the enriched expression of ACE2 in all subtypes of proximal tubule (PT) cells of the kidney. ACE2 expression was found in 5.12%, 5.80%, and 14.38% of the proximal convoluted tubule cells, PT cells, and proximal straight tubule cells, respectively, in three published kidney cell atlas datasets. In addition, ACE2 expression was also confirmed in 12.05%, 6.80%, and 10.20% of cells of the proximal convoluted tubule, PT, and proximal straight tubule, respectively, in our own two healthy kidney samples. For the analysis of public data from three bladder samples, ACE2 expression was low but detectable in bladder epithelial cells. Only 0.25% and 1.28% of intermediate cells and umbrella cells, respectively, had ACE2 expression.
CONCLUSION
This study has provided bioinformatics evidence of the potential route of 2019-nCoV infection in the urinary system.
Angiotensin-Converting Enzyme 2/metabolism*
;
COVID-19
;
Gene Expression
;
Humans
;
Kidney/metabolism*
;
SARS-CoV-2
;
Sequence Analysis, RNA
;
Single-Cell Analysis
;
Urinary Bladder/metabolism*