1.Comparison of the properties of CD146 positive and CD146 negative subpopulations of stem cells from human exfoliated deciduous teeth.
Xiao Tong WANG ; Nan Quan RAO ; Teng Jiao Zi FANG ; Yu Ming ZHAO ; Li Hong GE
Journal of Peking University(Health Sciences) 2018;50(2):284-292
OBJECTIVE:
Stem cells from human exfoliated teeth (SHED) were sorted by magnetically activated cell sorting (MACS) technique to obtain the CD146 positive and negative cell subpopulation. Then the biological characteristics of these subpopulations were compared to explore their specific application potential in tissue engineering.
METHODS:
In this study, freshly extracted deciduous teeth without any caries or dental pulp disease were obtained. SHED was isolated using enzyme digestion method and then sorted by MACS, CD146 positive cells and CD146 negative cells were obtained after cell sorting. The biological characteristics of the unsorted mixed cells, CD146 positive subpopulation and CD146 negative subpopulation were compared. The proliferation ability was detected through cell counting kit-8 (CCK-8) and colony-forming unit (CFU). After osteogenic induction, alizarin red staining was performed and the gene expression of osteogenic related markers was detected by quantitative real-time polymerase chain reaction(qPCR). After adipogenic induction, oil-red O staining was performed and the gene expression of adipogenic related markers was detected. After neurogenic differentiation induction, the expression of neural markers was detected by immunofluorescence and the gene expression of neural markers was detected by qPCR.
RESULTS:
SHED of the fifth passage was sorted by MACS. And the CD146 positive cell subpopulation and CD146 negative cell subpopulation were obtained. CCK8 assay showed that the proliferative tendency of the three cell groups was consistent, but the proliferation potential of CD146 positive and negative cell subpopulations was significantly lower than that of the unsorted cells. The colony forming rates of the unsorted mixed cell group, CD146 positive and negative populations were 28.6%±3%,17.1%±2.3% and 27.5%±2.5%, respectively. After 21 days of osteogenic induction, alizarin red staining and qPCR showed that the CD146 positive cell population had more mineralized nodule formation and expressed higher level of osteogenic related genes compared with the other two groups. After 21 days of adipogenic induction, oil red O staining and qPCR results showed that the CD146 negative subpopulation produced more lipid droplets and the expression of lipid related genes increased more significantly. After 14 days of neural induction, cell immunofluorescence and qPCR results showed that the unsorted mixed cell group and CD146 positive subpopulation expressed glial cell marker, and the expressions of neural precursor cells and neuronal marker increased significantly in negative subpopulation.
CONCLUSION
The unsorted mixed cells showed better proliferative potential than CD146 positive and negative subpopulations. The CD146 positive subpopulation was most potent in osteogenic differentiation; it was more suitable for bone tissue engineering. The CD146 negative cells had stronger adipogenic differentiation potential than the other two cell groups; different subpopulations differed in neural differentiation.
Bone and Bones
;
CD146 Antigen/analysis*
;
Cell Differentiation
;
Cell Movement
;
Cell Proliferation
;
Cells, Cultured
;
Humans
;
Mesenchymal Stem Cells
;
Neural Stem Cells
;
Neurons
;
Osteogenesis
;
Staining and Labeling
;
Tissue Engineering
;
Tooth, Deciduous/cytology*
2.Single CD271 marker isolates mesenchymal stem cells from human dental pulp.
Ruth ALVAREZ ; Hye-Lim LEE ; Christine HONG ; Cun-Yu WANG
International Journal of Oral Science 2015;7(4):205-212
Mesenchymal stem cells (MSCs) are a promising tool in regenerative medicine due to their capacity to differentiate into multiple lineages. In addition to MSCs isolated from bone marrow (BMSCs), adult MSCs are isolated from craniofacial tissues including dental pulp tissues (DPs) using various stem cell surface markers. However, there has been a lack of consensus on a set of surface makers that are reproducibly effective at isolating putative multipotent dental mesenchymal stem cells (DMSCs). In this study, we used different combinations of surface markers (CD51/CD140α, CD271, and STRO-1/CD146) to isolate homogeneous populations of DMSCs from heterogeneous dental pulp cells (DPCs) obtained from DP and compared their capacity to undergo multilineage differentiation. Fluorescence-activated cell sorting revealed that 27.3% of DPCs were CD51(+)/CD140α(+), 10.6% were CD271(+), and 0.3% were STRO-1(+)/CD146(+). Under odontogenic conditions, all three subsets of isolated DMSCs exhibited differentiation capacity into odontogenic lineages. Among these isolated subsets of DMSCs, CD271(+) DMSCs demonstrated the greatest odontogenic potential. While all three combinations of surface markers in this study successfully isolated DMSCs from DPCs, the single CD271 marker presents the most effective stem cell surface marker for identification of DMSCs with high odontogenic potential. Isolated CD271(+) DMSCs could potentially be utilized for future clinical applications in dentistry and regenerative medicine.
Adult
;
Adult Stem Cells
;
cytology
;
Antigens, CD
;
analysis
;
Antigens, Surface
;
analysis
;
Biomarkers
;
analysis
;
CD146 Antigen
;
analysis
;
Cell Culture Techniques
;
Cell Differentiation
;
physiology
;
Cell Lineage
;
Cell Separation
;
methods
;
Cells, Cultured
;
Chondrogenesis
;
physiology
;
Dental Pulp
;
cytology
;
Flow Cytometry
;
methods
;
Humans
;
Integrin alphaV
;
analysis
;
Mesenchymal Stromal Cells
;
cytology
;
Multipotent Stem Cells
;
cytology
;
Nerve Tissue Proteins
;
analysis
;
Odontogenesis
;
physiology
;
Receptor, Platelet-Derived Growth Factor alpha
;
analysis
;
Receptors, Nerve Growth Factor
;
analysis
3.Characterization of the osteogenic potential of mesenchymal stem cells from human periodontal ligament based on cell surface markers.
Ruth ALVAREZ ; Hye-Lim LEE ; Cun-Yu WANG ; Christine HONG
International Journal of Oral Science 2015;7(4):213-219
Mesenchymal stem cell (MSC)-mediated therapy has been shown to be clinically effective in regenerating tissue defects. For improved regenerative therapy, it is critical to isolate homogenous populations of MSCs with high capacity to differentiate into appropriate tissues. The utilization of stem cell surface antigens provides a means to identify MSCs from various tissues. However, few surface markers that consistently isolate highly regenerative MSCs have been validated, making it challenging for routine clinical applications and making it all the more imperative to identify reliable surface markers. In this study, we used three surface marker combinations: CD51/CD140α, CD271, and STRO-1/CD146 for the isolation of homogenous populations of dental mesenchymal stem cells (DMSCs) from heterogeneous periodontal ligament cells (PDLCs). Fluorescence-activated cell sorting analysis revealed that 24% of PDLCs were CD51(+)/CD140α(+), 0.8% were CD271(+), and 2.4% were STRO-1(+)/CD146(+). Sorted cell populations were further assessed for their multipotent properties by inducing osteogenic and chondrogenic differentiation. All three subsets of isolated DMSCs exhibited differentiation capacity into osteogenic and chondrogenic lineages but with varying degrees. CD271(+) DMSCs demonstrated the greatest osteogenic potential with strong induction of osteogenic markers such as DLX5, RUNX2, and BGLAP. Our study provides evidence that surface marker combinations used in this study are sufficient markers for the isolation of DMSCs from PDLCs. These results provide important insight into using specific surface markers for identifying homogenous populations of DMSCs for their improved utilization in regenerative medicine.
Adaptor Proteins, Signal Transducing
;
analysis
;
Adult
;
Aggrecans
;
analysis
;
Antigens, CD
;
analysis
;
Antigens, Surface
;
analysis
;
CD146 Antigen
;
analysis
;
Cell Differentiation
;
physiology
;
Cell Lineage
;
Cell Separation
;
methods
;
Cells, Cultured
;
Chondrogenesis
;
physiology
;
Collagen Type II
;
analysis
;
Core Binding Factor Alpha 1 Subunit
;
analysis
;
Flow Cytometry
;
methods
;
Homeodomain Proteins
;
analysis
;
Humans
;
Integrin alphaV
;
analysis
;
Mesenchymal Stromal Cells
;
cytology
;
physiology
;
Multipotent Stem Cells
;
cytology
;
physiology
;
Nerve Tissue Proteins
;
analysis
;
Osteogenesis
;
physiology
;
Periodontal Ligament
;
cytology
;
Receptor, Platelet-Derived Growth Factor alpha
;
analysis
;
Receptors, Nerve Growth Factor
;
analysis
;
SOX9 Transcription Factor
;
analysis
;
Time Factors
;
Transcription Factors
;
analysis