1.Transformation of antimicrobial peptide fusion gene of cecropin B and rabbit NP-1 to Houttuynia cordata.
Yan DONG ; Ying ZHANG ; Lang YI ; Huili LAI ; Yaming ZHANG ; Lian ZHOU ; Peixun WANG
China Journal of Chinese Materia Medica 2010;35(13):1660-1665
OBJECTIVETo transform the antimicrobial peptide fusion gene of cecropin B and rabbit NP-1(CN) into Houttuynia cordata to improve its antimicrobic capability.
METHODThe fusion gene of CN designed and synthesized artificially was recombined with expression vector pBI121. The recombined vector was transformed to Agrobacterium tumefaciens LBA4404, by which CN gene was transformed to the explants of H. cordata. The transgenic regeneration plantlets were selected by kanamycin and rapid screening PCR. The transgenic plants were identified by PCR-Southern of genomic DNA and RT-PCR. The disease resistances were detected by antibacterial zone trail of leaf extracts to E. coli K12 and infection by Rhizoctonia solani.
RESULTGene of interesting CN was inserted into genomic DNA and expressed in transformed H, cordata, whose resistance to E. coli K12 and Rh. solani was stronger than that of the non-transformed control.
CONCLUSIONThe fusion gene CN can improve antimicrobic capability of transformed H. cordata.
Animals ; Anti-Bacterial Agents ; immunology ; pharmacology ; C-Reactive Protein ; genetics ; metabolism ; pharmacology ; Houttuynia ; genetics ; immunology ; microbiology ; Immunity, Innate ; Insect Proteins ; genetics ; immunology ; pharmacology ; Nerve Tissue Proteins ; genetics ; metabolism ; pharmacology ; Plant Diseases ; immunology ; microbiology ; Plants, Genetically Modified ; genetics ; immunology ; microbiology ; Rabbits ; Recombinant Fusion Proteins ; genetics ; immunology ; pharmacology ; Rhizoctonia ; physiology ; Transformation, Genetic
2.Sodium tanshinone IIA sulfonate attenuates cardiac dysfunction and improves survival of rats with cecal ligation and puncture-induced sepsis.
Zheng-Jie MENG ; Chao WANG ; Ling-Tong MENG ; Bei-Hua BAO ; Jin-Hui WU ; Yi-Qiao HU
Chinese Journal of Natural Medicines (English Ed.) 2018;16(11):846-855
Cardiac dysfunction, a common consequence of sepsis, is the major contribution to morbidity and mortality in patients. Sodium tanshinone IIA sulfonate (STS) is a water-soluble derivative of Tanshinone IIA (TA), a main active component of Salvia miltiorrhiza Bunge, which has been widely used in China for the treatment of cardiovascular and cerebral system diseases. In the present study, the effect of STS on sepsis-induced cardiac dysfunction was investigated and its effect on survival rate of rats with sepsis was also evaluated. STS treatment could significantly decrease the serum levels of C-reactive protein (CRP), procalcitonin (PCT), cardiac troponin I (cTn-I), cardiac troponin T (cTn-T), and brain natriuretic peptide (BNP) in cecal ligation and puncture (CLP)-induced) septic rats and improve left ventricular function, particularly at 48 and 72 h after CLP. As the pathogenesis of septic myocardial dysfunction is attributable to dysregulated systemic inflammatory responses, several key cytokines, including tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), interleukin-6 (IL-6), interleukin-10 (IL-10) and high mobility group protein B1 (HMGB1), were detected to reveal the possible mechanism of attenuation of septic myocardial dysfunction after being treated by STS. Our study showed that STS, especially at a high dose (15 mg·kg), could efficiently suppress inflammatory responses in myocardium and reduce myocardial necrosis through markedly reducing production of myocardial TNF-α, IL-6 and HMGB1. STS significantly improved the 18-day survival rate of rats with sepsis from 0% to 30% (P < 0.05). Therefore, STS could suppress inflammatory responses and improve left ventricular function in rats with sepsis, suggesting that it may be developed for the treatment of sepsis.
Animals
;
C-Reactive Protein
;
genetics
;
immunology
;
Cecum
;
surgery
;
Drugs, Chinese Herbal
;
administration & dosage
;
chemistry
;
Female
;
Heart
;
drug effects
;
physiopathology
;
Humans
;
Interleukin-6
;
genetics
;
immunology
;
Ligation
;
adverse effects
;
Male
;
Myocardium
;
immunology
;
Phenanthrenes
;
administration & dosage
;
chemistry
;
Punctures
;
adverse effects
;
Rats
;
Salvia miltiorrhiza
;
chemistry
;
Sepsis
;
drug therapy
;
etiology
;
immunology
;
physiopathology
;
Troponin T
;
genetics
;
immunology
;
Tumor Necrosis Factor-alpha
;
genetics
;
immunology
3.Rottlerin enhances IL-1beta-induced COX-2 expression through sustained p38 MAPK activation in MDA-MB-231 human breast cancer cells.
Experimental & Molecular Medicine 2011;43(12):669-675
Cyclooxygenase-2 (COX-2) is an important enzyme in inflammation. In this study, we investigated the underlying molecular mechanism of the synergistic effect of rottlerin on interleukin1beta (IL-1beta)-induced COX-2 expression in MDA-MB-231 human breast cancer cell line. Treatment with rottlerin enhanced IL-1beta-induced COX-2 expression at both the protein and mRNA levels. Combined treatment with rottlerin and IL-1beta significantly induced COX-2 expression, at least in part, through the enhancement of COX-2 mRNA stability. In addition, rottlerin and IL-1beta treatment drove sustained activation of p38 Mitogen-activated protein kinase (MAPK), which is involved in induced COX-2 expression. Also, a pharmacological inhibitor of p38 MAPK (SB 203580) and transient transfection with inactive p38 MAPK inhibited rottlerin and IL-1beta-induced COX-2 upregulation. However, suppression of protein kinase C delta (PKC delta) expression by siRNA or overexpression of dominant-negative PKC delta (DN-PKC-delta) did not abrogate the rottlerin plus IL-1beta-induced COX-2 expression. Furthermore, rottlerin also enhanced tumor necrosis factor-alpha (TNF-alpha), phorbol myristate acetate (PMA), and lipopolysaccharide (LPS)-induced COX-2 expression. Taken together, our results suggest that rottlerin causes IL-1beta-induced COX-2 upregulation through sustained p38 MAPK activation in MDA-MB-231 human breast cancer cells.
Acetophenones/*pharmacology
;
Benzopyrans/*pharmacology
;
Breast Neoplasms/drug therapy/*genetics/immunology
;
Cell Line, Tumor
;
Cyclooxygenase 2/*genetics
;
Enzyme Activation/drug effects
;
Enzyme Inhibitors/*pharmacology
;
Female
;
Gene Expression Regulation, Neoplastic/*drug effects
;
Humans
;
Interleukin-1beta/*immunology
;
MAP Kinase Signaling System/drug effects
;
Mallotus Plant/chemistry
;
NF-kappa B/immunology
;
Protein Kinase C-delta/antagonists & inhibitors
;
Reactive Oxygen Species/immunology
;
p38 Mitogen-Activated Protein Kinases/*immunology
4.APOE Polymorphism Is Associated with C-reactive Protein Levels but Not with White Blood Cell Count: Dong-gu Study and Namwon Study.
Yong Woon YUN ; Sun Seog KWEON ; Jin Su CHOI ; Jung Ae RHEE ; Young Hoon LEE ; Hae Sung NAM ; Seul Ki JEONG ; Kyeong Soo PARK ; So Yeon RYU ; Seong Woo CHOI ; Hee Nam KIM ; Jane A CAULEY ; Min Ho SHIN
Journal of Korean Medical Science 2015;30(7):860-865
We evaluated the association of the APOE polymorphism with serum C-reactive protein levels and white blood cell count in two large population-based studies in Korean. The datasets included the Dong-gu study (n = 8,893) and the Namwon Study (n = 10,032). APOE genotypes were identified by polymerase chain reaction-restriction fragment length polymorphism. Multivariable linear regression analysis was performed to evaluate the relationship of APOE genotypes with C-reactive protein levels and white blood cell count with adjustments for age, sex, body mass index, smoking, diabetes, hypertension, and serum lipids. In the multivariate model, carriers of E3E4 or E4E4 genotype had significantly lower C-reactive protein levels compared with carriers of E3E3 genotype group (0.50 mg/L vs. 0.67 mg/L; 0.37 mg/L vs. 0.67 mg/L, respectively, for the Dong-gu Study and 0.47 mg/L vs. 0.66 mg/L; 0.45 mg/L vs. 0.66 mg/L, respectively, for the Namwon Study). However, there was no difference in white blood cell count among APOE genotypes. We found that the APOE E4 allele is associated with lower C-reactive protein levels, but not white blood cell count. Our results suggest that APOE genotype may influence C-reactive protein levels through non-inflammatory pathway.
Aged
;
Apolipoproteins E/*genetics
;
C-Reactive Protein/*metabolism
;
Female
;
Genetic Association Studies
;
Genotype
;
Humans
;
Inflammation/*blood/immunology
;
Leukocyte Count
;
Male
;
Middle Aged
;
Polymerase Chain Reaction
;
Polymorphism, Restriction Fragment Length
;
Polymorphism, Single Nucleotide/genetics
;
Prospective Studies
;
Republic of Korea
5.Honokiol ameliorates endothelial dysfunction through suppression of PTX3 expression, a key mediator of IKK/IkappaB/NF-kappaB, in atherosclerotic cell model.
Ling QIU ; Rong XU ; Siyang WANG ; Shuijun LI ; Hongguang SHENG ; Jiaxi WU ; Yi QU
Experimental & Molecular Medicine 2015;47(7):e171-
Pentraxin 3 (PTX3) was identified as a marker of the inflammatory response and overexpressed in various tissues and cells related to cardiovascular disease. Honokiol, an active component isolated from the Chinese medicinal herb Magnolia officinalis, was shown to have a variety of pharmacological activities. In the present study, we aimed to investigate the effects of honokiol on palmitic acid (PA)-induced dysfunction of human umbilical vein endothelial cells (HUVECs) and to elucidate potential regulatory mechanisms in this atherosclerotic cell model. Our results showed that PA significantly accelerated the expression of PTX3 in HUVECs through the IkappaB kinase (IKK)/IkappaB/nuclear factor-kappaB (NF-kappaB) pathway, reduced cell viability, induced cell apoptosis and triggered the inflammatory response. Knockdown of PTX3 supported cell growth and prevented apoptosis by blocking PA-inducted nitric oxide (NO) overproduction. Honokiol significantly suppressed the overexpression of PTX3 in PA-inducted HUVECs by inhibiting IkappaB phosphorylation and the expression of two NF-kappaB subunits (p50 and p65) in the IKK/IkappaB/NF-kappaB signaling pathway. Furthermore, honokiol reduced endothelial cell injury and apoptosis by regulating the expression of inducible NO synthase and endothelial NO synthase, as well as the generation of NO. Honokiol showed an anti-inflammatory effect in PA-inducted HUVECs by significantly inhibiting the generation of interleukin-6 (IL-6), IL-8 and monocyte chemoattractant protein-1. In summary, honokiol repaired endothelial dysfunction by suppressing PTX3 overexpression in an atherosclerotic cell model. PTX3 may be a potential therapeutic target for atherosclerosis.
Apoptosis/drug effects
;
Atherosclerosis/chemically induced/*drug therapy/immunology/pathology
;
Biphenyl Compounds/chemistry/isolation & purification/*pharmacology
;
C-Reactive Protein/*genetics/immunology
;
Down-Regulation/drug effects
;
Drugs, Chinese Herbal/chemistry/isolation & purification/*pharmacology
;
Human Umbilical Vein Endothelial Cells
;
Humans
;
I-kappa B Kinase/*immunology
;
Lignans/chemistry/isolation & purification/*pharmacology
;
Magnolia/chemistry
;
Palmitic Acid
;
Protein-Serine-Threonine Kinases/*immunology
;
Serum Amyloid P-Component/*genetics/immunology
;
Signal Transduction/drug effects
6.Inflammatory Marker Expression and Its Implication in Korean Ischemic Stroke Patients.
Su Yon PARK ; Meoung Hee KIM ; So Young KANG ; Jin Tae SUH ; Woo In LEE
The Korean Journal of Laboratory Medicine 2007;27(3):197-204
BACKGROUND: Ischemic stroke is a complex condition influenced by many factors. Previous studies have demonstrated that inflammatory markers might play a role in such vascular diseases. Therefore the purpose of this study was to compare the expression of inflammatory markers in Korean ischemic stroke patients and to investigate their relationship to APOE polymorphism. METHODS: The patient group consisted of 275 patients with large artery atherosclerosis (LAA, n=169) and small artery occlusion (SAO, n=106). One hundred and nineteen age matched healthy subjects were recruited as the control group. Serum levels of three inflammatory markers (matrix metalloproteinase, MMP-9; tissue inhibitor of metalloproteinase-1, TIMP-1; and high-sensitivity C-reactive protein, hs-CRP) were measured in each patient by using commercially available kits. Comparison of clinical risk factors, inflammatory marker levels, and APOE genotypes between the stroke patient group and control group and between the two patient subgroups was assessed. RESULTS: Comparison of the stroke group to control group showed significantly elevated levels of circulating MMP-9 (P<0.01) and hs-CRP (P=0.01). Comparison between the individual subgroups revealed a significantly higher level of only TIMP-1 in the LAA subgroup compared to the SAO subgroup (P<0.01). There was no significant difference in inflammatory marker levels among each allele carrier. CONCLUSIONS: The present study revealed the obvious tendency of increased circulating inflammatory markers in the patients with acute ischemic attack, especially MMP-9 and hs-CRP. Our observations suggest that measurement of serum MMP-9, TIMP-1, and hs-CRP levels may be useful in the diagnosis of ischemic stroke patients.
Aged
;
Apolipoproteins E/*genetics
;
Biological Markers/blood
;
Brain Ischemia/complications/*diagnosis
;
C-Reactive Protein/analysis
;
Carotid Artery Diseases/complications
;
Female
;
Genotype
;
Humans
;
Inflammation Mediators/*blood
;
Korea
;
Male
;
Matrix Metalloproteinase 9/blood
;
Middle Aged
;
Polymorphism, Genetic
;
Stroke/*diagnosis/etiology/immunology
;
Tissue Inhibitor of Metalloproteinase-1/blood
7.An antioxidant modulates expression of receptor activator of NF-kappaB in asthma.
Kyung Sun LEE ; Hee Sun PARK ; Seoung Ju PARK ; So Ri KIM ; Kyung Hoon MIN ; Sun Mi JIN ; Liangchang LI ; Yong Chul LEE
Experimental & Molecular Medicine 2006;38(3):217-229
Oxidative stress plays critical roles in airway inflammation that is usually accompanied by increased vascular permeability and plasma exudation. VEGF increases vascular permeability and leads to airway inflammation. In addition, VEGF has been shown to enhance receptor activator of NF-kappaB (RANK) expression in endothelial cells. An aim of the study was to determine the potential role of antioxidant in the regulation of RANK expression in murine model of asthma. We have used a C57BL/6 mouse model of allergic asthma to evaluate the effect of L-2-oxothiazolidine-4-carboxylic acid (OTC), a prodrug of cysteine, which acts as an antioxidant, and VEGF receptor inhibitor on RANK mRNA expression. The mice develop the following pathophysiological features of asthma in the lungs: increased expression of RANK mRNA, increased number of inflammatory cells of the airways, increased vascular permeability, and increased levels of VEGF. Administration of OTC and VEGF receptor inhibitor markedly reduced plasma extravasation and VEGF levels in allergen-induced asthmatic lungs. We also showed that the increased RANK mRNA expression at 72 h after ovalbumin inhalation were reduced by the administration of OTC or VEGF receptor inhibitor. The results indicate that OTC and VEGF receptor inhibitor which inhibit up-regulation of VEGF expression modulate RANK expression that may be in association with the regulation of vascular permeability, and suggest that VEGF may regulate the RANK expression. These findings provide a crucial molecular mechanism for the potential use of antioxidants to prevent and/or treat asthma and other airway inflammatory disorders.
Vascular Endothelial Growth Factor A/analysis/antagonists & inhibitors/metabolism
;
Thiazolidines
;
Thiazoles/*pharmacology
;
Reverse Transcriptase Polymerase Chain Reaction
;
Receptors, Vascular Endothelial Growth Factor/antagonists & inhibitors
;
Receptors, Tumor Necrosis Factor/genetics/*metabolism
;
Receptors, Cytoplasmic and Nuclear/genetics/*metabolism
;
Reactive Oxygen Species/metabolism
;
RNA, Messenger/genetics/metabolism
;
Pyrrolidonecarboxylic Acid
;
Proto-Oncogene Proteins c-akt/metabolism
;
Protein Kinase Inhibitors/pharmacology
;
Prodrugs/pharmacology
;
Phosphorylation/drug effects
;
Ovalbumin/immunology
;
Osteoprotegerin
;
Mice, Inbred C57BL
;
Mice
;
Immunohistochemistry
;
Glycoproteins/genetics/*metabolism
;
Gene Expression/drug effects
;
Female
;
Capillary Permeability/drug effects
;
Bronchoalveolar Lavage Fluid/chemistry/cytology
;
Blotting, Western
;
Asthma/*drug therapy/immunology/metabolism
;
Antioxidants/*pharmacology
;
Animals