1.Analysis of the functional domain of the hepatitis B virus X gene product fused to the GAL4 binding domain.
Byung Hyune CHOI ; Cheol Yong CHOI ; Geon Tae PARK ; Hyung Mo RHO
Journal of the Korean Society of Virology 1993;23(1):1-10
No abstract available.
Hepatitis B virus*
;
Hepatitis B*
;
Hepatitis*
2.Current Status and Future Perspectives of Stem Cells and Regenerative Medicine.
Hanyang Medical Reviews 2012;32(3):127-133
Stem cells and regenerative medicine are emerging and promising fields both in academic and industry points of views. They are currently under active investigation worldwide and their market size is expected to grow rapidly in the near future. The Korean government is also investing a huge amount of money on these fields to promote R&D and product commercialization. However, its technical maturity is still in its infant state and many hurdles should be resolved to accelerate technology to business. I can definitely say that we have to focus in the future on innovations in technology, regulations and reimbursement. In particular, the importance of translational research and clinical studies are of no doubt in the stem cells and regenerative medicine. I am going to deal with some of these issues in more detail in the main text.
Commerce
;
Humans
;
Infant
;
Regenerative Medicine
;
Social Control, Formal
;
Stem Cells
;
Translational Medical Research
3.Repair of Partial Thickness Cartilage Defects Using Cartilage Extracellular Matrix Membrane-Based Chondrocyte Delivery System in Human Ex Vivo Model.
Do Young PARK ; Byoung Hyun MIN ; Hyun Jung LEE ; Young Jick KIM ; Byung Hyune CHOI
Tissue Engineering and Regenerative Medicine 2016;13(2):182-190
Treatment options for partial thickness cartilage defects are limited. The purpose of this study was to evaluate the efficacy of the chondrocyte-seeded cartilage extracellular matrix membrane in repairing partial thickness cartilage defects. First, the potential of the membrane as an effective cell carrier was investigated. Secondly, we have applied the chondrocyte-seeded membrane in an ex vivo, partial thickness defect model to analyze its repair potential. After culture of chondrocytes on the membrane in vitro, cell viability assay, cell seeding yield calculation and cell transfer assay were done. Cell carrying ability of the membrane was also tested by seeding different densities of cells. Partial defects were created on human cartilage tissue explants. Cell-seeded membranes were applied using a modified autologous chondrocyte implantation technique on the defects and implanted subcutaneously in nude mice for 2 and 4 weeks. In vitro data showed cell viability and seeding yield comparable to standard culture dishes. Time dependent cell transfer from the membrane was observed. Membranes supported various densities of cells. Ex vivo data showed hyaline-like cartilage tissue repair, integrated on the defect by 4 weeks. Overall, chondrocyte-seeded cartilage extracellular membranes may be an effective and feasible treatment strategy for the repair of partial thickness cartilage defects.
Animals
;
Cartilage*
;
Cell Survival
;
Chondrocytes*
;
Extracellular Matrix*
;
Humans*
;
In Vitro Techniques
;
Lifting
;
Membranes
;
Mice
;
Mice, Nude
4.Exosomes from IL-1b-Primed Mesenchymal Stem Cells Inhibited IL-1b- and TNF-a-Mediated Inflammatory Responses in Osteoarthritic SW982 Cells
Mijin KIM ; Dong Il SHIN ; Byung Hyune CHOI ; Byoung-Hyun MIN
Tissue Engineering and Regenerative Medicine 2021;18(4):525-536
BACKGROUND:
Exosomes from mesenchymal stem cells (MSCs) show anti-inflammatory effect on osteoarthritis (OA); however, their biological effect and mechanism are not yet clearly understood. This study investigated the anti-inflammatory effect and mechanism of MSC-derived exosomes (MSC-Exo) primed with IL-1β in osteoarthritic SW982 cells.
METHODS:
SW982 cells were treated with interleukin (IL)-1β and tumor necrosis factor (TNF)-α to induce the OA phenotype. The effect of exosomes without priming (MSC-Exo) or with IL-1β priming (MSC-IL-Exo) was examined on the expression of pro- or anti-inflammatory factors, and the amount of IκBα was examined in SW982 cells. Exosomes were treated with RNase to remove RNA. The role of miR-147b was examined using a mimic and an inhibitor.
RESULTS:
MSC-IL-Exo showed stronger inhibitory effects on the expression of pro-inflammatory cytokines (IL-1β, IL-6, and monocyte chemoattractant protein-1) than MSC-Exo. The expression of anti-inflammatory factors (SOCS3 and SOCS6) was enhanced by MSCs-IL-Exo. Priming with IL-1β increased RNA content in MSC-IL-Exo, and pretreatment with RNase abolished anti-inflammatory effect in SW982 cells. miR-147b was found in much larger amounts in MSC-IL-Exo than in MSC-Exo. The miR-147b mimic significantly inhibited the expression of inflammatory cytokines, while the miR-147b inhibitor only partially blocked the anti-inflammatory effect of MSC-IL-Exo. MSC-IL-Exo and miR-147b mimic inhibited the reduction of IκBα, an nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) inhibitor, by IL-1β and TNF-α.
CONCLUSION
This study showed that MSC exosomes with IL-1β priming exhibit significantly enhanced anti-inflammatory activity in osteoarthritic SW982 cells. The effect of IL-1β-primed MSC exosomes is mediated by miRNAs such as miR-147b and involves inhibition of the NF-κB pathway.
5.Comparative Analysis of the Expression of Chondroitin Sulfate Subtypes and Their Inhibitory Effect on Axonal Growth in the Embryonic, Adult, and Injured Rat Brains
Moon Hang KIM ; So Ra PARK ; Byung Hyune CHOI
Tissue Engineering and Regenerative Medicine 2021;18(1):165-178
BACKGROUND:
Chondroitin sulfate glycosaminoglycans (CS-GAGs) are the primary inhibitory GAGs for neuronal growth after central nervous system (CNS) injury. However, the inhibitory or permissive activity of CS-GAG subtypes is controversial and depends on the physiological needs of CNS tissues. In this study, we investigated the characteristics and effects of CS-GAGs on axonal growth, which was isolated from the brain cortices of normal rat embryo at E18, normal adult rat brain and injured adult rat brain.
METHODS:
Isolated CS-GAGs from embryo, normal adult, and injured adult rat brains were used for analyzing their effect on attachment and axonal growth using modified spot assay with dorsal root ganglion (DRG) explants and cerebellar granule neurons (CGNs). CS-GAGs were separated using high performance liquid chromatography (HPLC), and the subtypes of CS-GAGs were analyzed.
RESULTS:
CS-GAGs of all three groups inhibited CGN attachment and axonal growth of DRGs. However, CS-GAGs of normal adult rat brain exhibited higher inhibitory activity than those of the other groups in both assays. When subtypes of CS-GAGs were analyzed using HPLC, CS-A (4S) was the most abundant in all three groups and found in largest amount in normal adult rat brain. In contrast, unsulfated CS (CS0) and CS-C (6S) were more abundant by 3–4-folds in E18 group than in the two adult groups.
CONCLUSION
When compared with the normal adult rat brain, injured rat brain showed relatively similar patterns to that of embryonic rat brain at E18 in the expression of CS subtypes and their inhibitory effect on axonal growth. This phenomenon could be due to differential expression of CS-GAGs subtypes causing decrease in the amount of CS-A and mature-type CS proteoglycan core proteins.
6.Exosomes from IL-1b-Primed Mesenchymal Stem Cells Inhibited IL-1b- and TNF-a-Mediated Inflammatory Responses in Osteoarthritic SW982 Cells
Mijin KIM ; Dong Il SHIN ; Byung Hyune CHOI ; Byoung-Hyun MIN
Tissue Engineering and Regenerative Medicine 2021;18(4):525-536
BACKGROUND:
Exosomes from mesenchymal stem cells (MSCs) show anti-inflammatory effect on osteoarthritis (OA); however, their biological effect and mechanism are not yet clearly understood. This study investigated the anti-inflammatory effect and mechanism of MSC-derived exosomes (MSC-Exo) primed with IL-1β in osteoarthritic SW982 cells.
METHODS:
SW982 cells were treated with interleukin (IL)-1β and tumor necrosis factor (TNF)-α to induce the OA phenotype. The effect of exosomes without priming (MSC-Exo) or with IL-1β priming (MSC-IL-Exo) was examined on the expression of pro- or anti-inflammatory factors, and the amount of IκBα was examined in SW982 cells. Exosomes were treated with RNase to remove RNA. The role of miR-147b was examined using a mimic and an inhibitor.
RESULTS:
MSC-IL-Exo showed stronger inhibitory effects on the expression of pro-inflammatory cytokines (IL-1β, IL-6, and monocyte chemoattractant protein-1) than MSC-Exo. The expression of anti-inflammatory factors (SOCS3 and SOCS6) was enhanced by MSCs-IL-Exo. Priming with IL-1β increased RNA content in MSC-IL-Exo, and pretreatment with RNase abolished anti-inflammatory effect in SW982 cells. miR-147b was found in much larger amounts in MSC-IL-Exo than in MSC-Exo. The miR-147b mimic significantly inhibited the expression of inflammatory cytokines, while the miR-147b inhibitor only partially blocked the anti-inflammatory effect of MSC-IL-Exo. MSC-IL-Exo and miR-147b mimic inhibited the reduction of IκBα, an nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) inhibitor, by IL-1β and TNF-α.
CONCLUSION
This study showed that MSC exosomes with IL-1β priming exhibit significantly enhanced anti-inflammatory activity in osteoarthritic SW982 cells. The effect of IL-1β-primed MSC exosomes is mediated by miRNAs such as miR-147b and involves inhibition of the NF-κB pathway.
7.Comparative Analysis of the Expression of Chondroitin Sulfate Subtypes and Their Inhibitory Effect on Axonal Growth in the Embryonic, Adult, and Injured Rat Brains
Moon Hang KIM ; So Ra PARK ; Byung Hyune CHOI
Tissue Engineering and Regenerative Medicine 2021;18(1):165-178
BACKGROUND:
Chondroitin sulfate glycosaminoglycans (CS-GAGs) are the primary inhibitory GAGs for neuronal growth after central nervous system (CNS) injury. However, the inhibitory or permissive activity of CS-GAG subtypes is controversial and depends on the physiological needs of CNS tissues. In this study, we investigated the characteristics and effects of CS-GAGs on axonal growth, which was isolated from the brain cortices of normal rat embryo at E18, normal adult rat brain and injured adult rat brain.
METHODS:
Isolated CS-GAGs from embryo, normal adult, and injured adult rat brains were used for analyzing their effect on attachment and axonal growth using modified spot assay with dorsal root ganglion (DRG) explants and cerebellar granule neurons (CGNs). CS-GAGs were separated using high performance liquid chromatography (HPLC), and the subtypes of CS-GAGs were analyzed.
RESULTS:
CS-GAGs of all three groups inhibited CGN attachment and axonal growth of DRGs. However, CS-GAGs of normal adult rat brain exhibited higher inhibitory activity than those of the other groups in both assays. When subtypes of CS-GAGs were analyzed using HPLC, CS-A (4S) was the most abundant in all three groups and found in largest amount in normal adult rat brain. In contrast, unsulfated CS (CS0) and CS-C (6S) were more abundant by 3–4-folds in E18 group than in the two adult groups.
CONCLUSION
When compared with the normal adult rat brain, injured rat brain showed relatively similar patterns to that of embryonic rat brain at E18 in the expression of CS subtypes and their inhibitory effect on axonal growth. This phenomenon could be due to differential expression of CS-GAGs subtypes causing decrease in the amount of CS-A and mature-type CS proteoglycan core proteins.
8.mTOR Plays an Important Role in the Stemness of Human Fetal Cartilage Progenitor Cells (hFCPCs)
Him-Cha SHIN ; Jiyoung KIM ; So Ra PARK ; Byung Hyune CHOI
Tissue Engineering and Regenerative Medicine 2024;21(2):309-318
BACKGROUND:
Mammalian target of rapamycin (mTOR) is known to regulate self-renewal ability and potency of embryonic stem cells (ESCs) and adult stem cells in opposite manners. However, its effects vary even among adult stem cells and are not reported in fetal stem/progenitor cells. This study investigated the role of mTOR in the function of human fetal cartilage-derived progenitor cells (hFCPCs).
METHODS:
mTOR activity in hFCPCs was first examined via the level of phosphor-mTOR until passage 19, together with doubling time of cells and senescence-associated b-galactosidase (SA-bGal). Then, the effect of 100 nM rapamycin, the inhibitor of mTOR, was investigated on self-renewal ability, proliferation rate and osteogenic/adipogenic potential of hFCPCs in vitro. Expression of stemness genes (Oct-4, Sox2 and Nanog) and cell cycle regulators (CDK4 and Cyclin D1) was measured at mRNA or protein levels.
RESULTS:
mTOR activity was maintained constantly at high levels in hFCPCs until passage 19, while their proliferation rate was decreasing from 48 h at passage 13 to 70 h at passage 9 and senescent cells were observed at passage 18 (8.3 ± 1.2%) and 19 (15.6 ± 1.9%). Inhibition of mTOR in hFCPCs impaired their colony forming frequency (CFU-F) by 4 folds, while showing no change in their doubling time and expression of CDK4 and Cyclin D1. Upon mTOR inhibition, Oct4 expression decreased by 2 folds and 4 folds at the mRNA and protein levels, respectively, while that of Sox2 and Nanog did not change significantly. Finally, mTOR inhibition reduced osteogenic and adipogenic differentiation of hFCPCs in vitro.
CONCLUSION
This study has shown that mTOR plays an important role in the self-renewal ability of hFCPCS but not in their proliferation, The effect of mTOR appears to be associated with Oct-4 expression and important in the osteogenic and adipogenic differentiation ability of hFCPCs.
9.Characteristics and Cardiomyogenic Potential of Rat Fetal Cardiac Progenitor Cells at Different Developmental Stage.
Tung Nguyen THANH ; Him Cha SHIN ; Hwal Ran KIM ; So Ra PARK ; Jiyoung KIM ; Byung Hyune CHOI
Tissue Engineering and Regenerative Medicine 2017;14(3):253-265
In recent years, several kinds of cardiac progenitor cells have been identified and isolated from heart tissue. These cells showed differentiation potential into cardiomyocytes, smooth muscle cells, and endothelial cells in vitro and in vivo. Morphogenetic events are tightly regulated during development to determine cell destiny and reshape the embryonic lineage. In this study, we directly compared the characteristics of rat fetal cardiac progenitor cells (rFCPCs) isolated from the chamber formation stage at embryonic day 12 (E12) and at the septation stage of E15. Both kinds of rFCPCs expressed mesenchymal stem cell markers (CD105, CD73, and CD29) but not CD34 and CD45. The E12 rFCPCs expressed a high level of Oct4 compared to E15 until passage 5 and showed a steep decline of Nkx2.5 expression at passage 5. However, Nkx2.5 expression at E15 was maintained until passage 5 and Oct4 expression slightly increased at passage 5. We also detected an intense staining for Oct4 antibody in E12 heart tissue sections. The average doubling time of the E12 rFCPCs from passage 3 to passage 15 was about 5 hours longer than E15. These cells could also be induced into cardiomyocytes expressing α-MHC, cTnT, cTnC, and Cx43 under cardiomyogenic culture conditions and rFCPCs at E15 showed more intense staining of α-MHC than cells at E12 by immunocytochemistry. Taken together, our results show that developmental differences between E12 and E15 may influence their properties and differentiation. Furthermore those differences should be considered when deciding on the optimal cell source for cell replacement therapy in cardiovascular regeneration.
Animals
;
Connexin 43
;
Endothelial Cells
;
Heart
;
Immunohistochemistry
;
In Vitro Techniques
;
Mesenchymal Stromal Cells
;
Myocytes, Cardiac
;
Myocytes, Smooth Muscle
;
Rats*
;
Regeneration
;
Stem Cells*
10.Characterization of Human Fetal Cartilage Progenitor Cells During Long-Term Expansion in a Xeno-Free Medium.
Hwal Ran KIM ; Jiyoung KIM ; So Ra PARK ; Byoung Hyun MIN ; Byung Hyune CHOI
Tissue Engineering and Regenerative Medicine 2018;15(5):649-659
BACKGROUND: Stem cell therapy requires a serum-free and/or chemically-defined medium for commercialization, but it is difficult to find one that supports long-term expansion of cells without compromising their stemness, particularly for novel stem cells. METHODS: In this study, we tested the efficiency of StemPro® MSC SFM Xeno Free (SFM-XF), a serum-free medium, for the long-term expansion of human fetal cartilage-derived progenitor cells (hFCPCs) from three donors in comparison to that of the conventional α-Modified Eagle's Medium (α-MEM) supplemented with 10% fetal bovine serum (FBS). RESULTS: We found that SFM-XF supported the expansion of hFCPCs for up to 28–30 passages without significant changes in the doubling time, while α-MEM with 10% FBS showed a rapid increase in doubling time at 10–18 passages depending on the donor. Senescence of hFCPCs was not observed until passage 10 in both media but was induced in approximately 15 and 25% of cells at passage 20 in SFM-XF and α-MEM with 10% FBS, respectively. The colony forming ability of hFCPCs in SFX-XF was also comparable to that in α-MEM with 10% FBS. hFCPCs expressed pluripotency genes like Oct-4, Sox-2, Nanog, SCF, and SSEA4 at passage 20 and 31 in SFM-XF; however, this was not observed when cells were cultured in α-MEM with 10% FBS. The ability of hFCPCs to differentiate into three mesodermal lineages decreased gradually in both media but it was less significant in SFM-XF. Finally we found no chromosomal abnormality after long-term culture of hFCPCs until passage 17 by karyotype analysis. CONCLUSION: These results suggest that SFM-XF supports the long-term expansion of hFCPCs without significant phenotypic and chromosomal changes. This study have also shown that hFCPCs can be mass-produced in vitro, proving their commercial value as a novel source for developing cell therapies.
Aging
;
Cartilage*
;
Cell- and Tissue-Based Therapy
;
Chromosome Aberrations
;
Humans*
;
In Vitro Techniques
;
Karyotype
;
Mesoderm
;
Stem Cells*
;
Tissue Donors