1.Association between Caffeinated Beverages Consumption and Sleep Quality of Urban Workers
Byung Il HWANG ; Ji-Young LEE ; Hyeon Jeong LIM ; Ryun HUH ; Mikyung RYU ; Sun Ha JEE ; Heejin KIMM
Korean Journal of Health Promotion 2025;25(1):9-19
Background:
The stimulatory effects of caffeine contribute to poor sleep quality. However, the relationship between caffeinated beverages and sleep quality, considering frequency or types of caffeinated beverages, were not extensively studied.
Methods:
Data were collected from 160 urban workers (75 men [46.9%] aged 20–69 years; with an average age of 41.8±12.3 years) using a structured, self-administered online questionnaire. Sleep quality, time, satisfaction; types and frequency of caffeinated beverages (number of cups per week; Q1: 0 cup, Q4: 14 or more cups per week), demographics, and health behaviors were asked. Sleep quality were evaluated using the Korean version of the Pittsburgh Sleep Quality Index (PSQI-K). Multiple regression analysis was conducted on the association between the frequency of caffeinated beverages consumption and sleep quality.
Results:
The most frequently consumed beverages were unsweetened coffee (22.8%) and the most common time for caffeine was between 12 pm to 5 pm (58.2%). The average sleep quality score based on the PSQI-K was 6.0±2.0 overall, 5.3±1.6 in Q1, and 6.6±2.2 in Q4 (frequent caffeinated beverage drinkers), indicating poorer sleep quality in Q4 (P=0.022). In Q1, 13.3% rated their sleep quality as ‘very good,’ while in Q4, only 2.5% gave the same rating. Poor sleep quality was significantly associated with the frequency of caffeinated beverages per week (β=0.232, P=0.004) and self-reported stress level (β=0.256, P=0.002).
Conclusions
Frequent consumption of caffeinated beverages appears to be associated with poor sleep quality among urban workers. While reducing caffeine intake may contribute to improvements in sleep quality as a health promoting behavior, this hypothesis requires validation through future studies employing personalized intervention approaches.
2.Anti-inflammatory Constituents from Artemisia iwayomogi Kitamura: A Bioassay-guided Fractionation Study
Ngoc Khanh VU ; Thi Thanh LE ; Trong Trieu TRAN ; Manh Tuan HA ; Jeong Ah KIM ; Byung Sun MIN
Natural Product Sciences 2025;31(1):43-48
Bioassay-guided fractionation of the methanolic extract of Artemisia iwayomogi Kitamura led to the isolation of 12 known compounds (1‒12). Notably, this study marks the first report of 3-epimeridinol (1) being isolated and structurally characterized from a natural source. Additionally, compounds 3, 4, and 7 were isolated from the Asteraceae family for the first time. The structural elucidation of the isolated compound was achieved through analysis of 1D, 2D NMR, and MS data. Upon evaluation of their inhibitory effects against lipopolysaccharideinduced nitric oxide production, compound 12 demonstrated significant inhibitory activity with greater potency than the reference compound quercetin. These results established A. iwayomogi as a promising source of antiinflammatory agents.
3.PTP1B Inhibitory Activity of Flavonoids from the Roots of Astragalus membranaceus Bunge
Thi Ly PHAM ; Manh Tuan HA ; Byung Sun MIN ; Jeong Ah KIM
Natural Product Sciences 2025;31(1):62-73
The roots of Astragalus membranaceus Bunge have long been used in herbal medicine for their diversebiological activities. Notably, its potential anti-diabetic properties have been extensively studied, highlighting promising therapeutic prospects. In this study, we conducted a comprehensive investigation focusing on flavonoid components from the roots of A. membranaceus and their PTP1B inhibitory activity. As a result, we isolated a total of 24 flavonoids, among which formonentin (1), pratensein (3), and vesticarpan (19) emerged as the most potent inhibitors against PTP1B with IC50 value of 10.9 ± 1.09 μM, 10.0 ± 1.71 μM, and 10.3 ± 1.31 μM, respectively.Additionally, through the enzyme kinetic analysis, the inhibition mode of compound 19 was determined as a competitive inhibitor, with Ki value of 7.6 ± 1.17 μM. Furthermore, the molecular docking simulation elucidated the binding mechanism of compound 19 with PTP1B, mainly through van der Waals forces and hydrogen bonds.This study highlights the PTP1B inhibitory potential of the flavonoid constituents derived from the roots of A. membranaceus. Moreover, discovering vesticarpan (19) as a novel PTP1B inhibitor provides a significant foundation for further investigations to develop innovative therapeutic strategies for diabetes treatment.
4.Combination of Aβ40, Aβ42, and Tau Plasma Levels to Distinguish Amyloid-PET Positive Alzheimer Patients from Normal Controls
Seungyeop BAEK ; Jinny Claire LEE ; Byung Hyun BYUN ; Su Yeon PARK ; Jeong Ho HA ; Kyo Chul LEE ; Seung-Hoon YANG ; Jun-Seok LEE ; Seungpyo HONG ; Gyoonhee HAN ; Sang Moo LIM ; YoungSoo KIM ; Hye Yun KIM
Experimental Neurobiology 2025;34(1):1-8
Alzheimer disease (AD) diagnosis is confirmed using a medley of modalities, such as the detection of amyloid-β (Aβ) neuritic plaques and neurofibrillary tangles with positron electron tomography (PET) or the appraisal of irregularities in cognitive function with examinations. Although these methods have been efficient in confirming AD pathology, the rising demand for earlier intervention during pathogenesis has led researchers to explore the diagnostic potential of fluid biomarkers in cerebrospinal fluid (CSF) and plasma. Since CSF sample collection is invasive and limited in quantity, biomarker detection in plasma has become more attractive and modern advancements in technology has permitted more efficient and accurate analysis of plasma biomolecules. In this study, we found that a composite of standard factors, Aβ40 and total tau levels in plasma, divided by the variation factor, plasma Aβ42 level, provide better correlation with amyloid neuroimaging and neuropsychological test results than a level comparison between total tau and Aβ42 in plasma. We collected EDTA-treated blood plasma samples of 53 subjects, of randomly selected 27 AD patients and 26 normal cognition (NC) individuals, who received amyloid-PET scans for plaque quantification, and measured plasma levels of Aβ40, Aβ42, and total tau with digital enzyme-linked immunosorbent assay (ELISA) in a blinded manner. There was difficulty distinguishing AD patients from controls when analyzing biomarkers independently. However, significant differentiation was observed between the two groups when comparing individual ratios of total-tau×Aβ40/Aβ42. Our results indicate that collectively comparing fluctuations of these fluid biomarkers could aid in monitoring AD pathogenesis.
5.Anti-inflammatory Constituents from Artemisia iwayomogi Kitamura: A Bioassay-guided Fractionation Study
Ngoc Khanh VU ; Thi Thanh LE ; Trong Trieu TRAN ; Manh Tuan HA ; Jeong Ah KIM ; Byung Sun MIN
Natural Product Sciences 2025;31(1):43-48
Bioassay-guided fractionation of the methanolic extract of Artemisia iwayomogi Kitamura led to the isolation of 12 known compounds (1‒12). Notably, this study marks the first report of 3-epimeridinol (1) being isolated and structurally characterized from a natural source. Additionally, compounds 3, 4, and 7 were isolated from the Asteraceae family for the first time. The structural elucidation of the isolated compound was achieved through analysis of 1D, 2D NMR, and MS data. Upon evaluation of their inhibitory effects against lipopolysaccharideinduced nitric oxide production, compound 12 demonstrated significant inhibitory activity with greater potency than the reference compound quercetin. These results established A. iwayomogi as a promising source of antiinflammatory agents.
6.PTP1B Inhibitory Activity of Flavonoids from the Roots of Astragalus membranaceus Bunge
Thi Ly PHAM ; Manh Tuan HA ; Byung Sun MIN ; Jeong Ah KIM
Natural Product Sciences 2025;31(1):62-73
The roots of Astragalus membranaceus Bunge have long been used in herbal medicine for their diversebiological activities. Notably, its potential anti-diabetic properties have been extensively studied, highlighting promising therapeutic prospects. In this study, we conducted a comprehensive investigation focusing on flavonoid components from the roots of A. membranaceus and their PTP1B inhibitory activity. As a result, we isolated a total of 24 flavonoids, among which formonentin (1), pratensein (3), and vesticarpan (19) emerged as the most potent inhibitors against PTP1B with IC50 value of 10.9 ± 1.09 μM, 10.0 ± 1.71 μM, and 10.3 ± 1.31 μM, respectively.Additionally, through the enzyme kinetic analysis, the inhibition mode of compound 19 was determined as a competitive inhibitor, with Ki value of 7.6 ± 1.17 μM. Furthermore, the molecular docking simulation elucidated the binding mechanism of compound 19 with PTP1B, mainly through van der Waals forces and hydrogen bonds.This study highlights the PTP1B inhibitory potential of the flavonoid constituents derived from the roots of A. membranaceus. Moreover, discovering vesticarpan (19) as a novel PTP1B inhibitor provides a significant foundation for further investigations to develop innovative therapeutic strategies for diabetes treatment.
7.Anti-inflammatory Constituents from Artemisia iwayomogi Kitamura: A Bioassay-guided Fractionation Study
Ngoc Khanh VU ; Thi Thanh LE ; Trong Trieu TRAN ; Manh Tuan HA ; Jeong Ah KIM ; Byung Sun MIN
Natural Product Sciences 2025;31(1):43-48
Bioassay-guided fractionation of the methanolic extract of Artemisia iwayomogi Kitamura led to the isolation of 12 known compounds (1‒12). Notably, this study marks the first report of 3-epimeridinol (1) being isolated and structurally characterized from a natural source. Additionally, compounds 3, 4, and 7 were isolated from the Asteraceae family for the first time. The structural elucidation of the isolated compound was achieved through analysis of 1D, 2D NMR, and MS data. Upon evaluation of their inhibitory effects against lipopolysaccharideinduced nitric oxide production, compound 12 demonstrated significant inhibitory activity with greater potency than the reference compound quercetin. These results established A. iwayomogi as a promising source of antiinflammatory agents.
8.PTP1B Inhibitory Activity of Flavonoids from the Roots of Astragalus membranaceus Bunge
Thi Ly PHAM ; Manh Tuan HA ; Byung Sun MIN ; Jeong Ah KIM
Natural Product Sciences 2025;31(1):62-73
The roots of Astragalus membranaceus Bunge have long been used in herbal medicine for their diversebiological activities. Notably, its potential anti-diabetic properties have been extensively studied, highlighting promising therapeutic prospects. In this study, we conducted a comprehensive investigation focusing on flavonoid components from the roots of A. membranaceus and their PTP1B inhibitory activity. As a result, we isolated a total of 24 flavonoids, among which formonentin (1), pratensein (3), and vesticarpan (19) emerged as the most potent inhibitors against PTP1B with IC50 value of 10.9 ± 1.09 μM, 10.0 ± 1.71 μM, and 10.3 ± 1.31 μM, respectively.Additionally, through the enzyme kinetic analysis, the inhibition mode of compound 19 was determined as a competitive inhibitor, with Ki value of 7.6 ± 1.17 μM. Furthermore, the molecular docking simulation elucidated the binding mechanism of compound 19 with PTP1B, mainly through van der Waals forces and hydrogen bonds.This study highlights the PTP1B inhibitory potential of the flavonoid constituents derived from the roots of A. membranaceus. Moreover, discovering vesticarpan (19) as a novel PTP1B inhibitor provides a significant foundation for further investigations to develop innovative therapeutic strategies for diabetes treatment.
9.Association between Caffeinated Beverages Consumption and Sleep Quality of Urban Workers
Byung Il HWANG ; Ji-Young LEE ; Hyeon Jeong LIM ; Ryun HUH ; Mikyung RYU ; Sun Ha JEE ; Heejin KIMM
Korean Journal of Health Promotion 2025;25(1):9-19
Background:
The stimulatory effects of caffeine contribute to poor sleep quality. However, the relationship between caffeinated beverages and sleep quality, considering frequency or types of caffeinated beverages, were not extensively studied.
Methods:
Data were collected from 160 urban workers (75 men [46.9%] aged 20–69 years; with an average age of 41.8±12.3 years) using a structured, self-administered online questionnaire. Sleep quality, time, satisfaction; types and frequency of caffeinated beverages (number of cups per week; Q1: 0 cup, Q4: 14 or more cups per week), demographics, and health behaviors were asked. Sleep quality were evaluated using the Korean version of the Pittsburgh Sleep Quality Index (PSQI-K). Multiple regression analysis was conducted on the association between the frequency of caffeinated beverages consumption and sleep quality.
Results:
The most frequently consumed beverages were unsweetened coffee (22.8%) and the most common time for caffeine was between 12 pm to 5 pm (58.2%). The average sleep quality score based on the PSQI-K was 6.0±2.0 overall, 5.3±1.6 in Q1, and 6.6±2.2 in Q4 (frequent caffeinated beverage drinkers), indicating poorer sleep quality in Q4 (P=0.022). In Q1, 13.3% rated their sleep quality as ‘very good,’ while in Q4, only 2.5% gave the same rating. Poor sleep quality was significantly associated with the frequency of caffeinated beverages per week (β=0.232, P=0.004) and self-reported stress level (β=0.256, P=0.002).
Conclusions
Frequent consumption of caffeinated beverages appears to be associated with poor sleep quality among urban workers. While reducing caffeine intake may contribute to improvements in sleep quality as a health promoting behavior, this hypothesis requires validation through future studies employing personalized intervention approaches.
10.Combination of Aβ40, Aβ42, and Tau Plasma Levels to Distinguish Amyloid-PET Positive Alzheimer Patients from Normal Controls
Seungyeop BAEK ; Jinny Claire LEE ; Byung Hyun BYUN ; Su Yeon PARK ; Jeong Ho HA ; Kyo Chul LEE ; Seung-Hoon YANG ; Jun-Seok LEE ; Seungpyo HONG ; Gyoonhee HAN ; Sang Moo LIM ; YoungSoo KIM ; Hye Yun KIM
Experimental Neurobiology 2025;34(1):1-8
Alzheimer disease (AD) diagnosis is confirmed using a medley of modalities, such as the detection of amyloid-β (Aβ) neuritic plaques and neurofibrillary tangles with positron electron tomography (PET) or the appraisal of irregularities in cognitive function with examinations. Although these methods have been efficient in confirming AD pathology, the rising demand for earlier intervention during pathogenesis has led researchers to explore the diagnostic potential of fluid biomarkers in cerebrospinal fluid (CSF) and plasma. Since CSF sample collection is invasive and limited in quantity, biomarker detection in plasma has become more attractive and modern advancements in technology has permitted more efficient and accurate analysis of plasma biomolecules. In this study, we found that a composite of standard factors, Aβ40 and total tau levels in plasma, divided by the variation factor, plasma Aβ42 level, provide better correlation with amyloid neuroimaging and neuropsychological test results than a level comparison between total tau and Aβ42 in plasma. We collected EDTA-treated blood plasma samples of 53 subjects, of randomly selected 27 AD patients and 26 normal cognition (NC) individuals, who received amyloid-PET scans for plaque quantification, and measured plasma levels of Aβ40, Aβ42, and total tau with digital enzyme-linked immunosorbent assay (ELISA) in a blinded manner. There was difficulty distinguishing AD patients from controls when analyzing biomarkers independently. However, significant differentiation was observed between the two groups when comparing individual ratios of total-tau×Aβ40/Aβ42. Our results indicate that collectively comparing fluctuations of these fluid biomarkers could aid in monitoring AD pathogenesis.

Result Analysis
Print
Save
E-mail