1.Early Administration of Nelonemdaz May Improve the Stroke Outcomes in Patients With Acute Stroke
Jin Soo LEE ; Ji Sung LEE ; Seong Hwan AHN ; Hyun Goo KANG ; Tae-Jin SONG ; Dong-Ick SHIN ; Hee-Joon BAE ; Chang Hun KIM ; Sung Hyuk HEO ; Jae-Kwan CHA ; Yeong Bae LEE ; Eung Gyu KIM ; Man Seok PARK ; Hee-Kwon PARK ; Jinkwon KIM ; Sungwook YU ; Heejung MO ; Sung Il SOHN ; Jee Hyun KWON ; Jae Guk KIM ; Young Seo KIM ; Jay Chol CHOI ; Yang-Ha HWANG ; Keun Hwa JUNG ; Soo-Kyoung KIM ; Woo Keun SEO ; Jung Hwa SEO ; Joonsang YOO ; Jun Young CHANG ; Mooseok PARK ; Kyu Sun YUM ; Chun San AN ; Byoung Joo GWAG ; Dennis W. CHOI ; Ji Man HONG ; Sun U. KWON ;
Journal of Stroke 2025;27(2):279-283
2.Early Administration of Nelonemdaz May Improve the Stroke Outcomes in Patients With Acute Stroke
Jin Soo LEE ; Ji Sung LEE ; Seong Hwan AHN ; Hyun Goo KANG ; Tae-Jin SONG ; Dong-Ick SHIN ; Hee-Joon BAE ; Chang Hun KIM ; Sung Hyuk HEO ; Jae-Kwan CHA ; Yeong Bae LEE ; Eung Gyu KIM ; Man Seok PARK ; Hee-Kwon PARK ; Jinkwon KIM ; Sungwook YU ; Heejung MO ; Sung Il SOHN ; Jee Hyun KWON ; Jae Guk KIM ; Young Seo KIM ; Jay Chol CHOI ; Yang-Ha HWANG ; Keun Hwa JUNG ; Soo-Kyoung KIM ; Woo Keun SEO ; Jung Hwa SEO ; Joonsang YOO ; Jun Young CHANG ; Mooseok PARK ; Kyu Sun YUM ; Chun San AN ; Byoung Joo GWAG ; Dennis W. CHOI ; Ji Man HONG ; Sun U. KWON ;
Journal of Stroke 2025;27(2):279-283
3.Early Administration of Nelonemdaz May Improve the Stroke Outcomes in Patients With Acute Stroke
Jin Soo LEE ; Ji Sung LEE ; Seong Hwan AHN ; Hyun Goo KANG ; Tae-Jin SONG ; Dong-Ick SHIN ; Hee-Joon BAE ; Chang Hun KIM ; Sung Hyuk HEO ; Jae-Kwan CHA ; Yeong Bae LEE ; Eung Gyu KIM ; Man Seok PARK ; Hee-Kwon PARK ; Jinkwon KIM ; Sungwook YU ; Heejung MO ; Sung Il SOHN ; Jee Hyun KWON ; Jae Guk KIM ; Young Seo KIM ; Jay Chol CHOI ; Yang-Ha HWANG ; Keun Hwa JUNG ; Soo-Kyoung KIM ; Woo Keun SEO ; Jung Hwa SEO ; Joonsang YOO ; Jun Young CHANG ; Mooseok PARK ; Kyu Sun YUM ; Chun San AN ; Byoung Joo GWAG ; Dennis W. CHOI ; Ji Man HONG ; Sun U. KWON ;
Journal of Stroke 2025;27(2):279-283
4.Clinical Trial Protocol for Porcine Islet Xenotransplantation in South Korea
Byung-Joon KIM ; Jun-Seop SHIN ; Byoung-Hoon MIN ; Jong-Min KIM ; Chung-Gyu PARK ; Hee-Jung KANG ; Eung Soo HWANG ; Won-Woo LEE ; Jung-Sik KIM ; Hyun Je KIM ; Iov KWON ; Jae Sung KIM ; Geun Soo KIM ; Joonho MOON ; Du Yeon SHIN ; Bumrae CHO ; Heung-Mo YANG ; Sung Joo KIM ; Kwang-Won KIM
Diabetes & Metabolism Journal 2024;48(6):1160-1168
Background:
Islet transplantation holds promise for treating selected type 1 diabetes mellitus patients, yet the scarcity of human donor organs impedes widespread adoption. Porcine islets, deemed a viable alternative, recently demonstrated successful longterm survival without zoonotic risks in a clinically relevant pig-to-non-human primate islet transplantation model. This success prompted the development of a clinical trial protocol for porcine islet xenotransplantation in humans.
Methods:
A single-center, open-label clinical trial initiated by the sponsor will assess the safety and efficacy of porcine islet transplantation for diabetes patients at Gachon Hospital. The protocol received approval from the Gachon Hospital Institutional Review Board (IRB) and the Korean Ministry of Food and Drug Safety (MFDS) under the Investigational New Drug (IND) process. Two diabetic patients, experiencing inadequate glycemic control despite intensive insulin treatment and frequent hypoglycemic unawareness, will be enrolled. Participants and their family members will engage in deliberation before xenotransplantation during the screening period. Each patient will receive islets isolated from designated pathogen-free pigs. Immunosuppressants and systemic infection prophylaxis will follow the program schedule. The primary endpoint is to confirm the safety of porcine islets in patients, and the secondary endpoint is to assess whether porcine islets can reduce insulin dose and the frequency of hypoglycemic unawareness.
Conclusion
A clinical trial protocol adhering to global consensus guidelines for porcine islet xenotransplantation is presented, facilitating streamlined implementation of comparable human trials worldwide.
5.Clinical Trial Protocol for Porcine Islet Xenotransplantation in South Korea
Byung-Joon KIM ; Jun-Seop SHIN ; Byoung-Hoon MIN ; Jong-Min KIM ; Chung-Gyu PARK ; Hee-Jung KANG ; Eung Soo HWANG ; Won-Woo LEE ; Jung-Sik KIM ; Hyun Je KIM ; Iov KWON ; Jae Sung KIM ; Geun Soo KIM ; Joonho MOON ; Du Yeon SHIN ; Bumrae CHO ; Heung-Mo YANG ; Sung Joo KIM ; Kwang-Won KIM
Diabetes & Metabolism Journal 2024;48(6):1160-1168
Background:
Islet transplantation holds promise for treating selected type 1 diabetes mellitus patients, yet the scarcity of human donor organs impedes widespread adoption. Porcine islets, deemed a viable alternative, recently demonstrated successful longterm survival without zoonotic risks in a clinically relevant pig-to-non-human primate islet transplantation model. This success prompted the development of a clinical trial protocol for porcine islet xenotransplantation in humans.
Methods:
A single-center, open-label clinical trial initiated by the sponsor will assess the safety and efficacy of porcine islet transplantation for diabetes patients at Gachon Hospital. The protocol received approval from the Gachon Hospital Institutional Review Board (IRB) and the Korean Ministry of Food and Drug Safety (MFDS) under the Investigational New Drug (IND) process. Two diabetic patients, experiencing inadequate glycemic control despite intensive insulin treatment and frequent hypoglycemic unawareness, will be enrolled. Participants and their family members will engage in deliberation before xenotransplantation during the screening period. Each patient will receive islets isolated from designated pathogen-free pigs. Immunosuppressants and systemic infection prophylaxis will follow the program schedule. The primary endpoint is to confirm the safety of porcine islets in patients, and the secondary endpoint is to assess whether porcine islets can reduce insulin dose and the frequency of hypoglycemic unawareness.
Conclusion
A clinical trial protocol adhering to global consensus guidelines for porcine islet xenotransplantation is presented, facilitating streamlined implementation of comparable human trials worldwide.
6.Clinical Trial Protocol for Porcine Islet Xenotransplantation in South Korea
Byung-Joon KIM ; Jun-Seop SHIN ; Byoung-Hoon MIN ; Jong-Min KIM ; Chung-Gyu PARK ; Hee-Jung KANG ; Eung Soo HWANG ; Won-Woo LEE ; Jung-Sik KIM ; Hyun Je KIM ; Iov KWON ; Jae Sung KIM ; Geun Soo KIM ; Joonho MOON ; Du Yeon SHIN ; Bumrae CHO ; Heung-Mo YANG ; Sung Joo KIM ; Kwang-Won KIM
Diabetes & Metabolism Journal 2024;48(6):1160-1168
Background:
Islet transplantation holds promise for treating selected type 1 diabetes mellitus patients, yet the scarcity of human donor organs impedes widespread adoption. Porcine islets, deemed a viable alternative, recently demonstrated successful longterm survival without zoonotic risks in a clinically relevant pig-to-non-human primate islet transplantation model. This success prompted the development of a clinical trial protocol for porcine islet xenotransplantation in humans.
Methods:
A single-center, open-label clinical trial initiated by the sponsor will assess the safety and efficacy of porcine islet transplantation for diabetes patients at Gachon Hospital. The protocol received approval from the Gachon Hospital Institutional Review Board (IRB) and the Korean Ministry of Food and Drug Safety (MFDS) under the Investigational New Drug (IND) process. Two diabetic patients, experiencing inadequate glycemic control despite intensive insulin treatment and frequent hypoglycemic unawareness, will be enrolled. Participants and their family members will engage in deliberation before xenotransplantation during the screening period. Each patient will receive islets isolated from designated pathogen-free pigs. Immunosuppressants and systemic infection prophylaxis will follow the program schedule. The primary endpoint is to confirm the safety of porcine islets in patients, and the secondary endpoint is to assess whether porcine islets can reduce insulin dose and the frequency of hypoglycemic unawareness.
Conclusion
A clinical trial protocol adhering to global consensus guidelines for porcine islet xenotransplantation is presented, facilitating streamlined implementation of comparable human trials worldwide.
7.Clinical Trial Protocol for Porcine Islet Xenotransplantation in South Korea
Byung-Joon KIM ; Jun-Seop SHIN ; Byoung-Hoon MIN ; Jong-Min KIM ; Chung-Gyu PARK ; Hee-Jung KANG ; Eung Soo HWANG ; Won-Woo LEE ; Jung-Sik KIM ; Hyun Je KIM ; Iov KWON ; Jae Sung KIM ; Geun Soo KIM ; Joonho MOON ; Du Yeon SHIN ; Bumrae CHO ; Heung-Mo YANG ; Sung Joo KIM ; Kwang-Won KIM
Diabetes & Metabolism Journal 2024;48(6):1160-1168
Background:
Islet transplantation holds promise for treating selected type 1 diabetes mellitus patients, yet the scarcity of human donor organs impedes widespread adoption. Porcine islets, deemed a viable alternative, recently demonstrated successful longterm survival without zoonotic risks in a clinically relevant pig-to-non-human primate islet transplantation model. This success prompted the development of a clinical trial protocol for porcine islet xenotransplantation in humans.
Methods:
A single-center, open-label clinical trial initiated by the sponsor will assess the safety and efficacy of porcine islet transplantation for diabetes patients at Gachon Hospital. The protocol received approval from the Gachon Hospital Institutional Review Board (IRB) and the Korean Ministry of Food and Drug Safety (MFDS) under the Investigational New Drug (IND) process. Two diabetic patients, experiencing inadequate glycemic control despite intensive insulin treatment and frequent hypoglycemic unawareness, will be enrolled. Participants and their family members will engage in deliberation before xenotransplantation during the screening period. Each patient will receive islets isolated from designated pathogen-free pigs. Immunosuppressants and systemic infection prophylaxis will follow the program schedule. The primary endpoint is to confirm the safety of porcine islets in patients, and the secondary endpoint is to assess whether porcine islets can reduce insulin dose and the frequency of hypoglycemic unawareness.
Conclusion
A clinical trial protocol adhering to global consensus guidelines for porcine islet xenotransplantation is presented, facilitating streamlined implementation of comparable human trials worldwide.
8.Erratum to "Small Molecule Inhibitors of Middle East Respiratory Syndrome Coronavirus Fusion by Targeting Cavities on Heptad Repeat Trimers" Biomol Ther 28(4), 311-319 (2020)
Mahmoud KANDEEL ; Mizuki YAMAMOTO ; Abdulla AL-TAHER ; Aya WATANABE ; Kentaro OH-HASHI ; Byoung Kwon PARK ; Hyung-Joo KWON ; Jun-ichiro INOUE ; Mohammed AL-NAZAWI
Biomolecules & Therapeutics 2024;32(2):262-265
9.Lazertinib versus Gefitinib as First-Line Treatment for EGFR-mutated Locally Advanced or Metastatic NSCLC: LASER301 Korean Subset
Ki Hyeong LEE ; Byoung Chul CHO ; Myung-Ju AHN ; Yun-Gyoo LEE ; Youngjoo LEE ; Jong-Seok LEE ; Joo-Hang KIM ; Young Joo MIN ; Gyeong-Won LEE ; Sung Sook LEE ; Kyung-Hee LEE ; Yoon Ho KO ; Byoung Yong SHIM ; Sang-We KIM ; Sang Won SHIN ; Jin-Hyuk CHOI ; Dong-Wan KIM ; Eun Kyung CHO ; Keon Uk PARK ; Jin-Soo KIM ; Sang Hoon CHUN ; Jangyoung WANG ; SeokYoung CHOI ; Jin Hyoung KANG
Cancer Research and Treatment 2024;56(1):48-60
Purpose:
This subgroup analysis of the Korean subset of patients in the phase 3 LASER301 trial evaluated the efficacy and safety of lazertinib versus gefitinib as first-line therapy for epidermal growth factor receptor mutated (EGFRm) non–small cell lung cancer (NSCLC).
Materials and Methods:
Patients with locally advanced or metastatic EGFRm NSCLC were randomized 1:1 to lazertinib (240 mg/day) or gefitinib (250 mg/day). The primary endpoint was investigator-assessed progression-free survival (PFS).
Results:
In total, 172 Korean patients were enrolled (lazertinib, n=87; gefitinib, n=85). Baseline characteristics were balanced between the treatment groups. One-third of patients had brain metastases (BM) at baseline. Median PFS was 20.8 months (95% confidence interval [CI], 16.7 to 26.1) for lazertinib and 9.6 months (95% CI, 8.2 to 12.3) for gefitinib (hazard ratio [HR], 0.41; 95% CI, 0.28 to 0.60). This was supported by PFS analysis based on blinded independent central review. Significant PFS benefit with lazertinib was consistently observed across predefined subgroups, including patients with BM (HR, 0.28; 95% CI, 0.15 to 0.53) and those with L858R mutations (HR, 0.36; 95% CI, 0.20 to 0.63). Lazertinib safety data were consistent with its previously reported safety profile. Common adverse events (AEs) in both groups included rash, pruritus, and diarrhoea. Numerically fewer severe AEs and severe treatment–related AEs occurred with lazertinib than gefitinib.
Conclusion
Consistent with results for the overall LASER301 population, this analysis showed significant PFS benefit with lazertinib versus gefitinib with comparable safety in Korean patients with untreated EGFRm NSCLC, supporting lazertinib as a new potential treatment option for this patient population.
10.Short-Term Effectiveness of Oral Nirmatrelvir/Ritonavir Against the SARS-CoV-2 Omicron Variant and Culture-Positive Viral Shedding
Eunyoung LEE ; Sehee PARK ; Jae-Phil CHOI ; Min-Kyung KIM ; Eunmi YANG ; Sin Young HAM ; Seungjae LEE ; Bora LEE ; Jeong-Sun YANG ; Byoung Kwon PARK ; Da Sol KIM ; So-Young LEE ; Joo-Yeon LEE ; Hee-Chang JANG ; Jaehyun JEON ; Sang-Won PARK
Journal of Korean Medical Science 2023;38(8):e59-
Background:
Information on the effectiveness of nirmatrelvir/ritonavir against the omicron is limited. The clinical response and viral kinetics to therapy in the real world need to be evaluated.
Methods:
Mild to moderate coronavirus disease 2019 (COVID-19) patients with risk factors for severe illness were prospectively enrolled as a treatment group with nirmatrelvir/ritonavir therapy versus a control group with supportive care. Serial viral load and culture from the upper respiratory tract were evaluated for seven days, and clinical responses and adverse reactions were evaluated for 28 days.
Results:
A total of 51 patients were analyzed including 40 in the treatment group and 11 in the control group. Faster symptom resolution during hospitalization (P= 0.048) was observed in the treatment group. Only minor adverse reactions were reported in 27.5% of patients. The viral load on Day 7 was lower in the treatment group (P = 0.002). The viral culture showed a positivity of 67.6% (25/37) vs. 100% (6/6) on Day 1, 0% (0/37) vs. 16.7 (1/6) on Day 5, and 0% (0/16) vs. 50.0% (2/4) on Day 7 in the treatment and control groups, respectively.
Conclusions
Nirmatrelvir/ritonavir against the omicron was safe and resulted in negative viral culture conversion after Day 5 of treatment with better symptomatic resolution.

Result Analysis
Print
Save
E-mail