1.Sodium butyrate activates HMGCS2 to promote ketone body production through SIRT5-mediated desuccinylation.
Yanhong XU ; Xiaotong YE ; Yang ZHOU ; Xinyu CAO ; Shiqiao PENG ; Yue PENG ; Xiaoying ZHANG ; Yili SUN ; Haowen JIANG ; Wenying HUANG ; Hongkai LIAN ; Jiajun YANG ; Jia LI ; Jianping YE
Frontiers of Medicine 2023;17(2):339-351
Ketone bodies have beneficial metabolic activities, and the induction of plasma ketone bodies is a health promotion strategy. Dietary supplementation of sodium butyrate (SB) is an effective approach in the induction of plasma ketone bodies. However, the cellular and molecular mechanisms are unknown. In this study, SB was found to enhance the catalytic activity of 3-hydroxy-3-methylglutaryl-CoA synthase 2 (HMGCS2), a rate-limiting enzyme in ketogenesis, to promote ketone body production in hepatocytes. SB administrated by gavage or intraperitoneal injection significantly induced blood ß-hydroxybutyrate (BHB) in mice. BHB production was induced in the primary hepatocytes by SB. Protein succinylation was altered by SB in the liver tissues with down-regulation in 58 proteins and up-regulation in 26 proteins in the proteomics analysis. However, the alteration was mostly observed in mitochondrial proteins with 41% down- and 65% up-regulation, respectively. Succinylation status of HMGCS2 protein was altered by a reduction at two sites (K221 and K358) without a change in the protein level. The SB effect was significantly reduced by a SIRT5 inhibitor and in Sirt5-KO mice. The data suggests that SB activated HMGCS2 through SIRT5-mediated desuccinylation for ketone body production by the liver. The effect was not associated with an elevation in NAD+/NADH ratio according to our metabolomics analysis. The data provide a novel molecular mechanism for SB activity in the induction of ketone body production.
Mice
;
Animals
;
Butyric Acid/metabolism*
;
Ketone Bodies/metabolism*
;
Liver/metabolism*
;
Hydroxybutyrates/metabolism*
;
Down-Regulation
;
Sirtuins/metabolism*
;
Hydroxymethylglutaryl-CoA Synthase/metabolism*
2.Cutinase production from short-chain organic acids by Thermobifida fusca.
Gangqiang HE ; Guocheng DU ; Liming LIU ; He LIU ; Guanghua HUO ; Jian CHEN
Chinese Journal of Biotechnology 2008;24(5):821-828
We studied cutinase production from short-chain organic acids by Thermobifida fusca WSH03-11 to evaluate the possibility of converting municipal sludge to high value-added products. The optimum organic acid (8.0 g/L) and nitrogen source (1.5 g/L) concentrations were determined by the single factor experiments with butyric acid, propionic acid and acetic acid as the carbon sources. When lactic acid was used as the carbon source, the optimum organic acid (3.0 g/L) and nitrogen source (1.0 g/L) concentrations were obtained. Cutinase production by T. fusca WSH03-11 was further improved with butyric acid (by 31.0%), propionic acid (by 13.3%), acetic acid (by 43.8%) and lactic acid (by 73.2%) as carbon source, respectively, with the optimized cutin concentrations. Among these four short-chain organic acids, the average specific consumption rate of acetic acid was the highest, higher than that of propionic acid 1.3-folds, butyric acid 2.0-folds and lactic acid 2.2-folds. The highest cutinase activity reached 52.4 u/mL with butyric acid (8 g/L) as the sole carbon source, higher than that of lactic acid (3 g/L) 1.7-folds, acetic acid (8 g/L) 2.5-folds and propionic acid (8 g/L) 3.2-folds. The yield of cutinase activity on lactic acid (12.70 u/mg) higher than that of butyric acid 1.4-folds, propionic acid 3.0-folds and acetic acid 3.8-folds. T. fusca WSH03-11 consumed acetic acid firstly in mixed acids carbon sources, and the consumption of butyric acid was inhibited. Further studies indicated that the consumption rate of butyrate was decreased by 66.7% in the presence of 0.5 g/L acetic acid in the mixed acids. This was the first report concerning the production of cutinase by T. fusca with mixed organic acids as the carbon sources. The results presented here provided a novel and efficient approach to produce high value-add products from municipal sludge, and also established a foundation for the industrial production of cutinase by T. fusca WSH03-11 with cheap carbon sources from the processing of municipal sludge.
Acetates
;
metabolism
;
Actinomycetales
;
growth & development
;
metabolism
;
Butyric Acid
;
metabolism
;
Carboxylic Ester Hydrolases
;
biosynthesis
;
Fermentation
;
Organic Chemicals
;
metabolism
;
Propionates
;
metabolism
3.Mechanism of pathogenesis of Jingfang Mixture in intervention of chronic spontaneous urticaria based on serum metabolomics.
He XIAO ; Guo-Liang CHENG ; Bing LI ; Xian-Zhen WANG ; Ran-Ran KONG ; Li-Hong PAN ; Gui-Min ZHANG
China Journal of Chinese Materia Medica 2022;47(20):5488-5493
This study aims to clarify the effect of Jingfang Mixture on the treatment of chronic urticarial and its mechanism, and investigate the regulatory effect of chronic urticaria on the metabolic disorder of endogenous metabolites in the blood. The mice were randomly divided into normal group, model group, and Jingfang Mixture group, and modeling and administration continued for 21 d. The changes in endogenous small molecules in rat serum were determined by ultra-high performance liquid chromatography-electrospray ionization-Q Exactive-Orbitrap-mass spectrometry(UHPLC-ESI-QE-Orbitrap-MS) metabolomics technology. The change trend of endogenous metabolites in rat serum was analyzed to find potential biomarkers. The results showed that Jingfang Mixture regulate 16 biomarkers, mainly including taurine, glutamate, succinic acid, docosahexaenoic acid, and arachidonic acid. Metabolic pathway analysis was carried out by MetaboAnalyst, and P<0.01 was taken as the potential key metabolic pathway. Ten metabolic pathways were closely related to the treatment of chronic urticarial by Jingfang Mixture, mainly involved in the glutamate metabolism, taurine and hypotaurine metabolism, arginine and proline metabolism, arachidonic acid metabolism, tricarboxylic acid cycle, unsaturated fatty acid biosynthesis, glutathione metabolism, phenylalanine metabolism, alanine, aspartic acid, and glutamate metabolism, and butyric acid metabolism. Glutamate metabolism and butyric acid metabolism involved more metabolic pathways than others. Therefore, it was speculated that Jingfang Mixture had a balanced regulating effect on the related metabolic pathways which caused the serum disorder in the rats with urticaria, and tended to regulate the metabolic differential to the normal level in the rats with urticaria. This paper provides references for studying the mechanism of Jingfang Mixture from the perspective of endogenous metabolites and metabolic pathways in vivo. At the same time, the endogenous substances explored in this paper can be used as important biomarkers for the prevention of urticaria.
Rats
;
Mice
;
Animals
;
Chronic Urticaria
;
Arachidonic Acid
;
Butyric Acid
;
Metabolomics/methods*
;
Chromatography, High Pressure Liquid/methods*
;
Biomarkers/metabolism*
;
Taurine
;
Glutamates
4.Batch and fed-batch production of butyric acid by clostridium butyricum ZJUCB.
Guo-qing HE ; Qing KONG ; Qi-he CHEN ; Hui RUAN
Journal of Zhejiang University. Science. B 2005;6(11):1076-1080
The production of butyric acid by Clostridium butyricum ZJUCB at various pH values was investigated. In order to study the effect of pH on cell growth, butyric acid biosynthesis and reducing sugar consumption, different cultivation pH values ranging from 6.0 to 7.5 were evaluated in 5-L bioreactor. In controlled pH batch fermentation, the optimum pH for cell growth and butyric acid production was 6.5 with a cell yield of 3.65 g/L and butyric acid yield of 12.25 g/L. Based on these results, this study then compared batch and fed-batch fermentation of butyric acid production at pH 6.5. Maximum value (16.74 g/L) of butyric acid concentration was obtained in fed-batch fermentation compared to 12.25 g/L in batch fermentation. It was concluded that cultivation under fed-batch fermentation mode could enhance butyric acid production significantly (P<0.01) by C. butyricum ZJUCB.
Bioreactors
;
microbiology
;
Butyric Acid
;
metabolism
;
Cell Culture Techniques
;
methods
;
Cell Proliferation
;
Clostridium butyricum
;
growth & development
;
metabolism
;
Glucose
;
metabolism
;
Hydrogen-Ion Concentration
5.Engineering and metabolic characteristics of a Clostridium tyrobutyricum strain.
Guiqing YANG ; Gang LIU ; Changde YANG
Chinese Journal of Biotechnology 2010;26(2):170-176
Clostridium tyrobutyricum is suitable for simultaneous saccharification and fermentation of lignocellulosic. It can produce butyric acid, acetic acid as its main fermentation products from a wide variety of carbohydrates such as glucose, xylose, cellobiose and arabinose. In order to decrease acetic acid content and increase butyric acid content in C. tyrobutyricum, we replaced genes on the acetic acid fermentation pathway with genes on the butyric acid fermentation pathway. Three genes were selected. They were acetyl-CoA acetylrtansfers gene (thl) which is the key enzyme gene associated with acetic acid fermentation pathway from Clostridium acetobutylicum, erythromycin gene (em) from plasmid pIMP1 and phosphotransacetylase gene (pta) which is the key enzyme gene associated with butyric acid fermentation pathway from C. tyrobutyricum. We fused these genes with pUC19 to construct nonreplicative integrated plasmids pUC19-EPT. Then we transformed pUC19-EPT into C. tyrobutyricum through electroporation. The recombinant transformants grown on plates containing erythromycin were validated by PCR. A mutant whose pta gene was displaced by thl gene on the chromosome was selected. In the fermentation from glucose, the mutant's yield of butyric acid is 0.47, increased by 34% compared with wild type; and the yield of acetic acid is 0.05, decreased by 29% compared with wild type.
Acetic Acid
;
analysis
;
metabolism
;
Acetyl-CoA C-Acetyltransferase
;
genetics
;
Butyric Acid
;
analysis
;
metabolism
;
Clostridium tyrobutyricum
;
genetics
;
metabolism
;
Fermentation
;
Genetic Engineering
;
methods
;
Glucose
;
metabolism
;
Industrial Microbiology
;
Lignin
;
metabolism
;
Mutation
;
Phosphate Acetyltransferase
;
genetics
6.Protective effect of histone acetylation against cortical injury in neonatal rats.
Ji-Chong HUANG ; Ya-Fei LI ; Feng-Yan ZHAO ; Yi QU ; De-Zhi MU
Chinese Journal of Contemporary Pediatrics 2017;19(1):81-87
OBJECTIVETo investigate the protective effect of histone acetylation against hypoxic-ischemic cortical injury in neonatal rats.
METHODSA total of 90 neonatal rats aged 3 days were divided into three groups: sham-operation, cortical injury model, and sodium butyrate (a histone deacetylase inhibitor) treatment. The rats in the model and the sodium butyrate treatment groups were intraperitoneally injected with lipopolysaccharide (0.05 mg/kg), and then right common carotid artery ligation was performed 2 hours later and the rats were put in a hypoxic chamber (oxygen concentration 6.5%) for 90 minutes. The rats in the sham-operation group were intraperitoneally injected with normal saline and the right common carotid artery was only separated and exposed without ligation or hypoxic treatment. The rats in the sodium butyrate treatment group were intraperitoneally injected with sodium butyrate (300 mg/kg) immediately after establishment of the cortical injury model once a day for 7 days. Those in the sham-operation and the model groups were injected with the same volume of normal saline. At 7 days after establishment of the model, Western blot was used to measure the protein expression of histone H3 (HH3), acetylated histone H3 (AH3), B-cell lymphoma/leukemia-2 (Bcl-2), Bcl-2-associated X protein (BAX), cleaved caspase-3 (CC3), and brain-derived neurotrophic factor (BDNF). Immunofluorescence assay was used to measure the expression of 5-bromo-2'-deoxyuridine (BrdU) as the cortex cell proliferation index.
RESULTSThe sodium butyrate treatment group had a significantly lower HH3/AH3 ratio than the model group (P<0.05), which suggested that the sodium butyrate treatment group had increased acetylation of HH3. Compared with the model group, the sodium butyrate treatment group had a significant increase in Bcl-2/Bax ratio, a significant reduction in CC3 expression, and a significant increase in BDNF expression (P<0.05). The sodium butyrate treatment group had a significant increase in the number of BrdU-positive cells in the cortex compared with the model group (P<0.05), and BrdU was mainly expressed in the neurons.
CONCLUSIONSIncreased histone acetylation may protect neonatal rats against cortical injury by reducing apoptosis and promoting regeneration of neurons. The mechanism may be associated with increased expression of BDNF.
Acetylation ; Animals ; Animals, Newborn ; Apoptosis ; drug effects ; Brain-Derived Neurotrophic Factor ; analysis ; Butyric Acid ; therapeutic use ; Cerebral Cortex ; pathology ; Female ; Histones ; metabolism ; Male ; Rats ; Rats, Sprague-Dawley
7.Sodium butyrate inhibits HMGB1 expression and release and attenuates concanavalin A-induced acute liver injury in mice.
Quan GONG ; Mao-Jian CHEN ; Chao WANG ; Hao NIE ; Yan-Xiang ZHANG ; Ke-Gang SHU ; Gang LI
Acta Physiologica Sinica 2014;66(5):619-624
The purpose of the present study is to explore the protective effects of sodium butyrate (SB) pretreatment on concanavalin A (Con A)-induced acute liver injury in mice. The model animals were first administered intraperitoneally with SB. Half an hour later, acute liver injury mouse model was established by caudal vein injection with Con A (15 mg/kg). Then, levels of serous alanine aminotransferase (ALT) and aspartate aminotransferase (AST) were measured using standard clinical method by an automated chemistry analyzer, tumor necrosis factor-α (TNF-α) and interferon-γ (IFN-γ) were measured by ELISA, and pathological changes in hepatic tissue were observed by using HE staining and light microscopy. The expression and release of high-mobility group box 1 (HMGB1) were assessed by using reverse transcription polymerase chain reaction (RT-PCR), immunohistochemistry and ELISA. The results showed that the pretreatment of SB significantly protected Con A-treated mice from liver injury as evidenced by the decrease of serum ALT, AST (P < 0.01) and reduction of hepatic tissues necrosis. SB also decreased levels of serous TNF-α and IFN-γ (P < 0.01). Furthermore, the expression and release of HMGB1 were markedly inhibited by SB pretreatment (P < 0.05 or P < 0.01). These results suggest that the attenuating effect of SB on Con A-induced acute liver injury may be due to its role of reducing the TNF-α and IFN-γ production, and inhibiting HMGB1 expression and release.
Alanine Transaminase
;
metabolism
;
Animals
;
Aspartate Aminotransferases
;
metabolism
;
Butyric Acid
;
pharmacology
;
Chemical and Drug Induced Liver Injury
;
drug therapy
;
Concanavalin A
;
adverse effects
;
Disease Models, Animal
;
HMGB1 Protein
;
metabolism
;
Interferon-gamma
;
metabolism
;
Liver
;
pathology
;
Mice
;
Tumor Necrosis Factor-alpha
;
metabolism
8.Sodium butyrate induces apoptosis of human colon cancer cells by modulating ERK and sphingosine kinase 2.
Min XIAO ; Yun Gang LIU ; Meng Chen ZOU ; Fei ZOU
Biomedical and Environmental Sciences 2014;27(3):197-203
OBJECTIVETo investigate the role of extracellular signal-regulated kinase (ERK) in apoptosis of human colon cancer (HCT116) cells.
METHODSAfter the HCT116 cells were pretreated with specific ERK inhibitor (U0126) or specific siRNA and exposed to 10 mmol/L sodium butyrate (NaBT) for 24 h, their apoptosis was detected by flow cytometry, levels of SphK2 and ERK protein were measured by Western blot, and translocation of SphK2 was assayed by immunofluorescence microscopy.
RESULTSThe U0126 and siRNAs specific for SphK2 blocked the export of SphK2 from nuclei to cytoplasm and increased the apoptosis of HCT116 cells following NaBT exposure. Over-expression of PKD decreased NaBT-induced apoptosis of HCT116 cells, which was reversed by U0126. Furthermore, transfection of HCT116 cells with constitutively activated PKD plasmids recovered the U0126-blocked export of SphK2.
CONCLUSIONERK regulates the export of SphK2 and apoptosis of HCT116 cells by modulating PKD. Modulation of these molecules may help increase the sensitivity of colon cancer cells to the physiologic anti-colon cancer agent, NaBT.
Apoptosis ; drug effects ; physiology ; Butyric Acid ; pharmacology ; Extracellular Signal-Regulated MAP Kinases ; metabolism ; HCT116 Cells ; drug effects ; Humans ; Phosphotransferases (Alcohol Group Acceptor) ; genetics ; metabolism ; Protein Kinase C ; genetics ; metabolism ; RNA, Small Interfering ; Signal Transduction ; drug effects
9.Protective effects of sodium butyrate against lung injury in mice with endotoxemia.
Acta Physiologica Sinica 2012;64(3):308-312
The aim of the present study was to investigate the effects of sodium butyrate (SB) on systemic inflammation, lung injury and survival rate of mice with endotoxemia. Balb/c mice were pre-treated with SB or vehicle, and then endotoxemia was induced by lethal dose of lipopolysaccharide (LPS, 20 mg/kg, i.p.) and the survival rate of mice was monitored. A separated set of animals were sacrificed at 18 h after LPS challenge, and blood samples were harvested for measuring TNF-α and IL-6 levels. Lung tissues were also harvested to determine the ratio of wet weight to dry weight of lung tissue and myeloperoxidase (MPO) activity in lung tissue. In addition, the formalin-fixed lung specimens were stained with HE routinely for morphologic evaluation. The results showed that pre-treatment with SB alleviated LPS-induced morphological damage in lung tissue. This was accompanied by reduced ratio of wet weight to dry weight of lung tissue and MPO activity in lung homogenates. Additionally, the up-regulation of pro-inflammatory cytokines TNF-α and IL-6 was also suppressed by SB, while the survival rate of mice with lethal endotoxemia was significantly increased by SB pre-treatment. The results suggest that SB effectively attenuates intrapulmonary inflammatory response and improves the survival of endotoxemic mice.
Animals
;
Butyric Acid
;
pharmacology
;
Endotoxemia
;
drug therapy
;
Inflammation
;
drug therapy
;
Interleukin-6
;
metabolism
;
Lipopolysaccharides
;
Lung
;
drug effects
;
pathology
;
Lung Injury
;
drug therapy
;
Male
;
Mice
;
Mice, Inbred BALB C
;
Peroxidase
;
metabolism
;
Tumor Necrosis Factor-alpha
;
metabolism
10.Transient folate deprivation in combination with small-molecule compounds facilitates the generation of somatic cell-derived pluripotent stem cells in mice.
Wen-tao HU ; Qiu-yue YAN ; Yu FANG ; Zhan-dong QIU ; Su-ming ZHANG
Journal of Huazhong University of Science and Technology (Medical Sciences) 2014;34(2):151-156
Induced pluripotent stem cells (iPSCs) can be propagated indefinitely, while maintaining the capacity to differentiate into all cell types in the body except for the extra-embryonic tissues. This iPSC technology not only represents a new way to use individual-specific stem cells for regenerative medicine but also constitutes a novel method to obtain large numbers of disease-specific cells for biomedical research. However, the low efficiency of reprogramming and genomic integration of oncogenes and viral vectors limit the potential application of iPSCs. Chemical-induced reprogramming offers a novel approach to generating iPSCs. In this study, a new combination of small-molecule compounds (SMs) (sodium butyrate, A-83-01, CHIR99021, Y-27632) under conditions of transient folate deprivation was used to generate iPSC. It was found that transient folate deprivation combined with SMs was sufficient to permit reprogramming from mouse embryonic fibroblasts (MEFs) in the presence of transcription factors, Oct4 and Klf4, within 25 days, replacing Sox2 and c-Myc, and accelerated the generation of mouse iPSCs. The resulting cell lines resembled mouse embryonic stem (ES) cells with respect to proliferation rate, morphology, pluripotency-associated markers and gene expressions. Deprivation of folic acid, combined with treating MEFs with SMs, can improve the inducing efficiency of iPSCs and reduce their carcinogenicity and the use of exogenous reprogramming factors.
Amides
;
pharmacology
;
Animals
;
Butyric Acid
;
pharmacology
;
Cell Differentiation
;
drug effects
;
Cell Line
;
Cell Proliferation
;
drug effects
;
Extraembryonic Membranes
;
cytology
;
drug effects
;
Folic Acid
;
pharmacology
;
Induced Pluripotent Stem Cells
;
cytology
;
drug effects
;
Kruppel-Like Transcription Factors
;
metabolism
;
Mice
;
Octamer Transcription Factor-3
;
metabolism
;
Proto-Oncogene Proteins c-myc
;
metabolism
;
Pyrazoles
;
pharmacology
;
Pyridines
;
pharmacology
;
Pyrimidines
;
pharmacology
;
SOXB1 Transcription Factors
;
metabolism
;
Thiocarbamates
;
pharmacology
;
Thiosemicarbazones