1.Protective effect of butylated hydroxylanisole against hydrogen peroxide-induced apoptosis in primary cultured mouse hepatocytes.
Geun Hye HWANG ; Yu Jin JEON ; Ho Jae HAN ; Soo Hyun PARK ; Kyoung Min BAEK ; Woochul CHANG ; Joong Sun KIM ; Lark Kyun KIM ; You Mie LEE ; Sangkyu LEE ; Jong Sup BAE ; Jun Goo JEE ; Min Young LEE
Journal of Veterinary Science 2015;16(1):17-23
Butylated hydroxyanisole (BHA) is a synthetic phenolic compound consisting of a mixture of two isomeric organic compounds: 2-tert-butyl-4-hydroxyanisole and 3-tert-butyl-4-hydroxyanisole. We examined the effect of BHA against hydrogen peroxide (H2O2)-induced apoptosis in primary cultured mouse hepatocytes. Cell viability was significantly decreased by H2O2 in a dose-dependent manner. Additionally, H2O2 treatment increased Bax, decreased Bcl-2, and promoted PARP-1 cleavage in a dose-dependent manner. Pretreatment with BHA before exposure to H2O2 significantly attenuated the H2O2-induced decrease of cell viability. H2O2 exposure resulted in an increase of intracellular reactive oxygen species (ROS) generation that was significantly inhibited by pretreatment with BHA or N-acetyl-cysteine (NAC, an ROS scavenger). H2O2-induced decrease of cell viability was also attenuated by pretreatment with BHA and NAC. Furthermore, H2O2-induced increase of Bax, decrease of Bcl-2, and PARP-1 cleavage was also inhibited by BHA. Taken together, results of this investigation demonstrated that BHA protects primary cultured mouse hepatocytes against H2O2-induced apoptosis by inhibiting ROS generation.
Animals
;
Apoptosis/*drug effects
;
Butylated Hydroxyanisole/chemistry/*pharmacology
;
Cell Survival/drug effects
;
Cells, Cultured
;
Hepatocytes/*drug effects
;
Hydrogen Peroxide/*toxicity
;
Male
;
Mice
;
Mice, Inbred ICR
;
Molecular Structure