1.A novel thiol compound, N-acetylcysteine amide, attenuates allergic airway disease by regulating activation of NF-kappaB and hypoxia-inducible factor-1alpha.
Kyung Sun LEE ; So Ri KIM ; Hee Sun PARK ; Seoung Ju PARK ; Kyung Hoon MIN ; Ka Young LEE ; Yeong Hun CHOE ; Sang Hyun HONG ; Hyo Jin HAN ; Young Rae LEE ; Jong Suk KIM ; Daphne ATLAS ; Yong Chul LEE
Experimental & Molecular Medicine 2007;39(6):756-768
Reactive oxygen species (ROS) play an important role in the pathogenesis of airway inflammation and hyperresponsiveness. Recent studies have demonstrated that antioxidants are able to reduce airway inflammation and hyperreactivity in animal models of allergic airway disease. A newly developed antioxidant, small molecular weight thiol compound, N-acetylcysteine amide (AD4) has been shown to increase cellular levels of glutathione and to attenuate oxidative stress related disorders such as Alzheimer's disease, Parkinson's disease, and multiple sclerosis. However, the effects of AD4 on allergic airway disease such as asthma are unknown. We used ovalbumin (OVA)-inhaled mice to evaluate the role of AD4 in allergic airway disease. In this study with OVA-inhaled mice, the increased ROS generation, the increased levels of Th2 cytokines and VEGF, the increased vascular permeability, the increased mucus production, and the increased airway resistance in the lungs were significantly reduced by the administration of AD4. We also found that the administration of AD4 decreased the increases of the NF-kappaB and hypoxia-inducible factor-1alpha (HIF-1alpha) levels in nuclear protein extracts of lung tissues after OVA inhalation. These results suggest that AD4 attenuates airway inflammation and hyperresponsiveness by regulating activation of NF-kappaB and HIF-1alpha as well as reducing ROS generation in allergic airway disease.
Acetylcysteine/*analogs & derivatives/therapeutic use
;
Animals
;
Asthma/drug therapy/*immunology/pathology
;
Bronchial Hyperreactivity/*drug therapy/metabolism
;
Hypoxia-Inducible Factor 1, alpha Subunit/*metabolism
;
Mice
;
NF-kappa B/*metabolism
;
Ovalbumin/immunology
;
Reactive Oxygen Species/*metabolism
;
Vascular Endothelial Growth Factor A/metabolism
2.Protective effects of methane-rich saline on mice with allergic asthma by inhibiting inflammatory response, oxidative stress and apoptosis.
Ning ZHANG ; Hong-Tao LU ; Rong-Jia ZHANG ; Xue-Jun SUN
Journal of Zhejiang University. Science. B 2019;20(10):828-837
BACKGROUND:
Asthma is a common cause of breathing difficulty in children and adults, and is characterized by chronic airway inflammation that is poorly controlled by available treatments. This results in severe disability and applies a huge burden to the public health system. Methane has been demonstrated to function as a therapeutic agent in many diseases. The aim of the present study was to explore the effect of methane-rich saline (MRS) on the pathophysiology of a mouse model of asthma and its underlying mechanism.
METHODS:
A murine model of ovalbumin (OVA)-induced allergic asthma was applied in this study. Mice were divided into three groups: a control group, an OVA group, and OVA-induced asthmatic mice treated with MRS as the third group. Lung resistance index (RI) and dynamic compliance (Cdyn) were measured to determine airway hyper-responsiveness (AHR). Haematoxylin and eosin (H&E) staining was performed and scored to show histopathological changes. Cell counts of bronchoalveolar lavage fluid (BALF) were recorded. Cytokines interleukin (IL)-4, IL-5, IL-13, tumor necrosis factor α (TNF-α), and C-X-C motif chemokine ligand 15 (CXCL15) from BALF and serum were measured by enzyme-linked immunosorbent assay (ELISA). The oxidative stress indexes, including malondialdehyde (MDA), superoxide dismutase (SOD), catalase (CAT), glutathione (GSH), myeloperoxidase (MPO), and 8-hydroxydeoxyguanosine (8-OHdG), were determined using commercial kits. Apoptosis was evaluated by western blot, quantitative real-time polymerase chain reaction (qRT-PCR), and biochemical examination.
RESULTS:
MRS administration reversed the OVA-induced AHR, attenuated the pathological inflammatory infiltration, and decreased the cytokines IL-4, IL-5, IL-13, TNF-α, and CXCL15 in serum and BALF. Moreover, following MRS administration, the oxidative stress was alleviated as indicated by decreased MDA, MPO, and 8-OHdG, and elevated SOD and GSH. In addition, MRS exhibited an anti-apoptotic effect in this model, protecting epithelial cells from damage.
CONCLUSIONS
Methane improves pulmonary function and decreases infiltrative inflammatory cells in the allergic asthmatic mouse model. This may be associated with its anti-inflammatory, antioxidative, and anti-apoptotic properties.
Animals
;
Apoptosis/drug effects*
;
Asthma/metabolism*
;
Bronchial Hyperreactivity/drug therapy*
;
Cytokines/analysis*
;
Female
;
Inflammation/prevention & control*
;
Methane/pharmacology*
;
Mice
;
Mice, Inbred BALB C
;
Oxidative Stress/drug effects*
;
Saline Solution
3.Regulation of pro-inflammatory responses by lipoxygenases via intracellular reactive oxygen species in vitro and in vivo.
So Yong KIM ; Tae Bum KIM ; Keun Ai MOON ; Tae Jin KIM ; Dongwoo SHIN ; You Sook CHO ; Hee Bom MOON ; Ki Young LEE
Experimental & Molecular Medicine 2008;40(4):461-476
Reactive oxygen species (ROS) performs a pivotal function as a signaling mediator in receptor-mediated signaling. However, the sources of ROS in this signaling have yet to be determined, but may include lipoxygenases (LOXs) and NADPH oxidase. The stimulation of lymphoid cells with TNF-alpha, IL-1beta, and LPS resulted in significant ROS production and NF-kappaB activation. Intriguingly, these responses were markedly abolished via treatment with the LOXs inhibitor nordihydroguaiaretic acid (NDGA). We further examined in vivo anti-inflammatory effects of NDGA in allergic airway inflammation. Both intraperitoneal and intravenous NDGA administration attenuated ovalbumin (OVA)-induced influx into the lungs of total leukocytes, as well as IL-4, IL-5, IL-13, and TNF-alpha levels. NDGA also significantly reduced serum levels of OVA-specific IgE and suppressed OVA-induced airway hyperresponsiveness to inhaled methacholine. The results of our histological studies and flow cytometric analyses showed that NDGA inhibits OVA-induced lung inflammation and the infiltration of CD11b+ macrophages into the lung. Collectively, our findings indicate that LOXs performs an essential function in pro-inflammatory signaling via the regulation of ROS regulation, and also that the inhibition of LOXs activity may have therapeutic potential with regard to the treatment of allergic airway inflammation.
Animals
;
Antioxidants/metabolism
;
Asthma/complications/metabolism/pathology/physiopathology
;
Bronchial Hyperreactivity/drug therapy/pathology
;
Bronchial Provocation Tests
;
Bronchoalveolar Lavage Fluid/cytology
;
Cells, Cultured
;
Drug Evaluation, Preclinical
;
Humans
;
Inflammation/*etiology/metabolism
;
Jurkat Cells
;
Lipoxygenase/*physiology
;
Lipoxygenase Inhibitors/pharmacology/therapeutic use
;
Lymphocytes/drug effects/metabolism
;
Male
;
Mice
;
Mice, Inbred BALB C
;
Nordihydroguaiaretic Acid/pharmacology/therapeutic use
;
Reactive Oxygen Species/*adverse effects/*metabolism
4.Tripterygium polyglycosid attenuates the established airway inflammation in asthmatic mice.
Chang-Gui CHEN ; Hui-Ying WANG ; Yu DAI ; Jiao-Li WANG ; Wei-Hua XU
Chinese journal of integrative medicine 2013;19(4):282-288
OBJECTIVETo investigate the effect of Tripterygium polyglycosid on establishing airway eosinophil infiltration and related airway hyperresponsiveness of asthmatic mice.
METHODSA mature murine asthmatic model was made with ovabulmin sensitized and challenged C57BL/6 mice. Forty mice were divided into four groups with 10 mice in each group: mice sensitized and challenged with saline (WS group), mice sensitized and challenged with ovalbumin (WO group), mice sensitized and challenged with ovalbumin and treated with Tripterygium polyglycosid (TP group) and Dexamethasone (DXM group). The mice were intraperitoneally injected with 20 μg chicken ovabulmin emulsified in injected alum on days 0 and 14, then were challenged with an aerosol generated from 1% ovabulmin on days 24, 25 and 26. Tripterygium polyglycosid was injected intraperitoneally at 50 mg/kg on days 25, 26 and 27 after ovabulmin challenge. Dexamethasone was administrated to mice at 2 mg/kg on day 21, 23 before ovabulmin challenge. The airway hyperresponsiveness, mucus production, eosinophils in parabronchial area and bronchoalveolar lavage fluid and the level of interleukin-5, granulo-macrophage clone stimulating factor in bronchoalveolar lavage fluid were measured as indexes of inflammation.
RESULTSTripterygium polyglycosid treatment after ovabulmin challenge completely inhibited eosinophil infiltration in bronchoalveolar lavage fluid [(0.63 ± 0.34)× 10(4) vs. (75.0 ± 14.8)× 10(4), P<0.05] and the peribrochial area (12.60 ± 3.48 mm(2) vs. 379.0 ± 119.3 mm(2), P<0.05), mucus overproduction in airway (2.8 ± 1.7 vs. 7.1±5.6, P<0.05), and increased interleukin-5 levels in bronchoalveolar lavage fluid (28.8 ± 2.8 pg/mL vs. 7.5 ± 3.5 pg/mL, P<0.05). Meanwhile, Tripterygium polyglycosid treatment after ovabulmin challenge also partially inhibited airway hyperresponsiveness. The level of granulo-macrophage clone stimulating factor in bronchoalveolar lavage fluid didn't change with drugs intervention.
CONCLUSIONSThe administration of Tripterygium polyglycosid could inhibit the established airway inflammation and reduce the airway hyperresponsiveness of allergic asthmatic mice. It provides a possible alternative therapeutic for asthma.
Animals ; Asthma ; complications ; drug therapy ; physiopathology ; Bronchial Hyperreactivity ; complications ; drug therapy ; physiopathology ; Bronchoalveolar Lavage Fluid ; Cytokines ; metabolism ; Dexamethasone ; pharmacology ; therapeutic use ; Drugs, Chinese Herbal ; pharmacology ; therapeutic use ; Eosinophils ; drug effects ; Lung ; drug effects ; pathology ; physiopathology ; Mice ; Mice, Inbred C57BL ; Mucus ; metabolism ; Ovalbumin ; Plant Extracts ; pharmacology ; therapeutic use ; Pneumonia ; complications ; drug therapy ; physiopathology ; Tripterygium ; chemistry
5.Effect of San'ao Decoction on the airway inflammation and hyperresponsiveness in a murine model of lipopolysaccharide-enhanced asthma.
Peng-Cheng GU ; Xin-Sheng FAN ; Chen-Xue JIANG ; Hui-Qin XU ; Jing-Hua YU ; Yu-Ping TANG
Chinese journal of integrative medicine 2011;17(7):537-541
OBJECTIVESan'ao Decoction (, SAD), as a representative Chinese medicine (CM) formula, was chosen to evaluate the effect of airway inflammation and hyperresponsiveness on the lipopolysaccharide (LPS) enhanced asthma model.
METHODSThe asthma model was reproduced in the Balb/C mice sensitized by ovalbumin (OVA), challenged by OVA and LPS. After Balb/C mice's administration of a dose (0.0024 g/kg) of dexamethasone acetate, and three doses (2.2 g/kg, 4.4 g/kg and 8.8 g/kg) of SAD, airway inflammation and responsiveness were observed. The airway inflammation was detected by counting bronchoalveolar lavage fluid (BALF) cells and lung histopathology. Also, differential expressions of interferon-r (IFN-γ), interleukin-4 (IL-4), and IL-5 in the supernatants of BALF were examined. The changes in airway responsiveness indicated by lung resistance (R(L)) and stimulated by acetylcholine (Ach) were determined.
RESULTSSmall-dose SAD hardly inhibit airway inflammation or hyperresponsiveness in the LPS-enhanced asthma, while medium-dose and high-dose SAD significantly inhibited the airway hyperresponsiveness, and to some extent, reduced airway inflammation. Meanwhile, the small-dose, medium-dose, and high-dose SAD promoted Th1-type cytokines (IFN-γ) and reduced Th2-type cytokines (IL-4, IL-5) to different extents, which led to a Th1/Th2 balance.
CONCLUSIONSAD has a good therapeutic effect on airway hyperresponsiveness in the LPS-enhanced asthma model, but its definite influence on airway inflammation is not remarkable.
Animals ; Asthma ; chemically induced ; complications ; drug therapy ; physiopathology ; Bronchial Hyperreactivity ; complications ; drug therapy ; pathology ; Bronchoalveolar Lavage Fluid ; cytology ; Cell Count ; Disease Models, Animal ; Drugs, Chinese Herbal ; therapeutic use ; Female ; Interferon-gamma ; metabolism ; Interleukin-4 ; metabolism ; Interleukin-5 ; metabolism ; Lipopolysaccharides ; Lung ; pathology ; physiopathology ; Mice ; Mice, Inbred BALB C ; Pneumonia ; complications ; drug therapy ; pathology
6.The Soluble Tumor Necrosis Factor-Alpha Receptor Suppresses Airway Inflammation in a Murine Model of Acute Asthma.
Hae Seong NAM ; Sook Young LEE ; Seung Jun KIM ; Ju Sang KIM ; Soon Seog KWON ; Young Kyoon KIM ; Kwan Hyung KIM ; Hwa Sik MOON ; Jeong Sup SONG ; Sung Hak PARK ; Seok Chan KIM
Yonsei Medical Journal 2009;50(4):569-575
PURPOSE: Tumor necrosis factor-alpha (TNF-alpha) is a proinflammatory cytokine that has been implicated in many aspects of the airway pathology in asthma. TNF-alpha blocking strategies are now being tried in asthma patients. This study investigated whether TNF-alpha blocking therapy inhibits airway inflammation and airway hyperresponsiveness (AHR) in a mouse model of asthma. We also evaluated the effect of TNF-alpha blocking therapy on cytokine production and adhesion molecule expression. MATERIALS AND METHODS: Ovalbumin (OVA) sensitized BALB/c female mice were exposed to intranasal OVA administration on days 31, 33, 35, and 37. Mice were treated intraperitoneally with soluble TNF-alpha receptor (sTNFR) during the OVA challenge. RESULTS: There were statistically significant decreases in the numbers of total cell and eosinophil in bronchoalveolar lavage fluid (BALF) in the sTNFR treated group compared with the OVA group. However, sTNFR-treatment did not significantly decrease AHR. Anti-inflammatory effect of sTNFR was accompanied with reduction of T helper 2 cytokine levels including interleukin (IL)-4, IL-5 and IL-13 in BALF and vascular cell adhesion molecule 1 expression in lung tissue. CONCLUSION: These results suggest that sTNFR treatment can suppress the airway inflammation via regulation of Th2 cytokine production and adhesion molecule expression in bronchial asthma.
Animals
;
Anti-Asthmatic Agents/*therapeutic use
;
Asthma/*drug therapy/*immunology
;
Blotting, Western
;
Bronchi/drug effects
;
Bronchial Hyperreactivity
;
Bronchoalveolar Lavage Fluid/immunology
;
Enzyme-Linked Immunosorbent Assay
;
Female
;
Immunohistochemistry
;
Inflammation/*drug therapy
;
Interleukin-13/metabolism
;
Interleukin-4/metabolism
;
Interleukin-5/metabolism
;
Mice
;
Mice, Inbred BALB C
;
Ovalbumin/pharmacology
;
Tumor Necrosis Factor-alpha/*therapeutic use
7.Treatment of allergic airway inflammation and hyperresponsiveness by imiquimod modulating transcription factors T-bet and GATA-3.
Tao BIAN ; Kai-sheng YIN ; Shu-xian JIN ; Xi-long ZHANG ; Jin-yong ZHOU ; Xiu-qin MA ; Jing-jing HU ; Wei DE
Chinese Medical Journal 2006;119(8):640-648
BACKGROUNDImiquimod is an imidazoquinoline, which class of compounds are known to have antiviral and antitumoural properties. In recent studies, it was shown that imiquimod modulates the T helper cell type Th1/Th2 response by inducing the production of Th1 cytokines like IFN-gamma, and by inhibiting the Th2 cytokines like interleukin (IL)-4. Several investigators have shown that T-bet and GATA-3 are master Th1 and Th2 regulatory transcription factors. This study investigated whether imiquimod treatment inhibited airway inflammation by modulating transcription factors T-bet and GATA-3.
METHODSThirty-six male SD rats were randomly divided into a control group, an asthmatic group, and an imiquimod group, which was exposed to an aerosol of 0.15% imiquimod. Twenty-four hours after the last ovalbumin (OVA) challenge, airway responsiveness was measured and changes in airway histology were observed. The concentrations of IL-4, IL-5 and IFN-gamma in bronchoalveolar lavage fluid (BALF) and serum were measured by enzyme linked immunosorbent assay (ELISA). The mRNA expressions of IL-4, IL-5, IFN-gamma, T-bet and GATA-3 in lung and in CD4(+) T cells were determined by reverse transcription polymerase chain reaction (RT-PCR). The protein expressions of T-bet and GATA-3 were measured by Western blot.
RESULTSIt was demonstrated that imiquimod 1) attenuated OVA induced airway inflammation; 2) diminished the degree of airway hyperresponsiveness (AHR); 3) decreased the Th2 type cytokines and increased Th1 type cytokines mRNA and protein levels; 4) modulated the Th1/Th2 reaction by inhibiting GATA-3 production and increasing T-bet production.
CONCLUSIONImiquimod treatment inhibits OVA induced airway inflammation by modulating key master switches GATA-3 and T-bet that result in committing T helper cells to a Th1 phenotype.
Administration, Inhalation ; Aminoquinolines ; administration & dosage ; therapeutic use ; Animals ; Asthma ; drug therapy ; metabolism ; Bronchi ; pathology ; Bronchial Hyperreactivity ; drug therapy ; metabolism ; Cytokines ; biosynthesis ; Eosinophils ; physiology ; GATA3 Transcription Factor ; genetics ; Gene Expression Regulation ; drug effects ; Lung ; pathology ; Male ; Ovalbumin ; immunology ; RNA, Messenger ; analysis ; Rats ; Rats, Sprague-Dawley ; T-Box Domain Proteins ; Transcription Factors ; genetics
8.Inhibitory effects of sunitinib on ovalbumin-induced chronic experimental asthma in mice.
Mao HUANG ; Xuan LIU ; Qiang DU ; Xin YAO ; Kai-sheng YIN
Chinese Medical Journal 2009;122(9):1061-1066
BACKGROUNDTyrosine kinase signaling cascades play a critical role in the pathogenesis of allergic airway inflammation. Sunitinib, a multitargeted receptor tyrosine kinase inhibitor, has been reported to exert potent immunoregulatory, anti-inflammatory and anti-fibrosis effects. We investigated whether sunitinib could suppress the progression of airway inflammation, airway hyperresponsiveness (AHR), and airway remodeling in a murine model of chronic asthma.
METHODSOvalbumin (OVA)-sensitized mice were chronically challenged with aerosolized OVA for 8 weeks. Some mice were intragastrically administered with sunitinib (40 mg/kg) daily during the period of OVA challenge. Twelve hours after the last OVA challenge, mice were evaluated for the development of airway inflammation, AHR and airway remodeling. The levels of total serum immunoglobulin E (IgE) and Th2 cytokines (interleukin (IL)-4 and IL-13) in bronchoalveolar lavage fluid (BALF) were measured by ELISA. The expression of phosphorylated c-kit protein in the lungs was detected by immunoprecipitation/Western blotting (IP/WB) analysis.
RESULTSSunitinib significantly inhibited eosinophilic airway inflammation, persistent AHR and airway remodeling in chronic experimental asthma. It reduced levels of total serum IgE and BALF Th2 cytokines and also lowered the expression of phosphorylated c-kit protein in remodelled airways.
CONCLUSIONSSunitinib may inhibit the development of airway inflammation, AHR and airway remodeling. It is potentially beneficial to the prevention or treatment of asthma.
Angiogenesis Inhibitors ; pharmacology ; Animals ; Asthma ; chemically induced ; drug therapy ; immunology ; Blotting, Western ; Bronchial Hyperreactivity ; chemically induced ; immunology ; Bronchoalveolar Lavage Fluid ; chemistry ; Female ; Immunoglobulin E ; blood ; Immunohistochemistry ; Immunoprecipitation ; In Vitro Techniques ; Indoles ; pharmacology ; Inflammation ; chemically induced ; immunology ; Interleukin-13 ; metabolism ; Interleukin-4 ; metabolism ; Lung ; drug effects ; immunology ; metabolism ; Mice ; Mice, Inbred BALB C ; Ovalbumin ; pharmacology ; Proto-Oncogene Proteins c-kit ; metabolism ; Pyrroles ; pharmacology
9.The Effect of CpG-Oligodeoxynucleotides with Different Backbone Structures and 3' Hexameric Deoxyriboguanosine Run Conjugation on the Treatment of Asthma in Mice.
Yoon Seok CHANG ; Yoon Keun KIM ; Hyouk Soo KWON ; Heung Woo PARK ; Kyung Up MIN ; You Young KIM ; Sang Heon CHO
Journal of Korean Medical Science 2009;24(5):860-866
CpG-Oligodeoxynucleotide (ODN) has two backbones. Phosphorothioate backbone (PS) shows a strong immunostimulating effect while phosphodiester (PE) shows little in vivo. 3' hexameric deoxyriboguanosine-run (3' dG6-run) conjugation to PE CpG-ODN has been reported to enhance immunostimulation and to protect against asthma when injected at the time of sensitization in mice. We evaluated the treatment effects of PE and PS CpG-ODN with or without 3' dG6-run on asthma in presensitized mice. BALB/c mice sensitized with ovalbumin and alum were challenged with 1% ovalbumin on three days. CpG-ODNs (100 microgram) or PBS were injected 4 times; 27 hr before challenge and 3 hr before each challenge (CpG-dG6: CpG-ODN with 3' dG6-run, PE*-CpG-dG6: PE-CpG-dG6 with two PS backbones at the 5' terminus). PE-CpG showed no treatment effect. PE-CpG-dG6 only increased ovalbumin-specific IgG2a. PE*-CpG-dG6 increased ovalbumin-specific IgG2a but also reduced BAL fluid eosinophils and airway hyperresponsiveness. PS-CpG increased ovalbumin-specific IgG2a, reduced airway inflammation and airway hyperresponsiveness. PS-CpG-dG6 was less effective than PS-CpG on airway inflammation and airway hyperresponsiveness. In pre-sensitized mice, PE-CpG required not only 3' dG6-run but also the modification of two PS linkages at 5' terminus to inhibit features of asthma. PS-CpG was strong enough to inhibit asthma but PS-CpG-dG6 was less effective.
Animals
;
Anti-Asthmatic Agents/*therapeutic use
;
Asthma/*drug therapy/physiopathology
;
Bronchial Hyperreactivity/drug therapy
;
Bronchoalveolar Lavage Fluid/immunology
;
Deoxyguanosine/*analogs & derivatives/*chemistry
;
Female
;
Immunoglobulin G/metabolism
;
Interleukin-12/analysis
;
Interleukin-4/analysis
;
Interleukin-5/analysis
;
Lung/pathology
;
Mice
;
Mice, Inbred BALB C
;
Oligodeoxyribonucleotides/*therapeutic use
;
Phosphorothioate Oligonucleotides/therapeutic use
;
Splenomegaly/pathology
10.Angiopoietin-1 variant, COMP-Ang1 attenuates hydrogen peroxide-induced acute lung injury.
So Ri KIM ; Kyung Sun LEE ; Seoung Ju PARK ; Kyung Hoon MIN ; Ka Young LEE ; Yeong Hun CHOE ; Sang Hyun HONG ; Gou Young KOH ; Yong Chul LEE
Experimental & Molecular Medicine 2008;40(3):320-331
Reactive oxygen species (ROS) play a crucial role in acute lung injury. Tissue inflammation, the increased vascular permeability, and plasma exudation are cardinal features of acute lung injury. Angiopoietin-1 (Ang1) has potential therapeutic applications in preventing vascular leakage and also has beneficial effects in several inflammatory disorders. Recently developed COMP-Ang1 is more potent than native Ang1 in phosphorylating tyrosine kinase with immunoglobulin and EGF homology domain 2 receptor in endothelial cells. However, there are no data on effects and related molecular mechanisms of COMP- Ang1 on ROS-induced acute lung injury. We used hydrogen peroxide (H2O2)-inhaled mice to evaluate the effect of COMP-Ang1 on pulmonary inflammation, bronchial hyper-responsiveness, and vascular leakage in acute lung injury. The results have revealed that VEGF expression, the levels of IL-4, TNF-alpha, IL-1 beta, intercellular adhesion molecule-1, and vascular cell adhesion molecule-1 in lungs, the levels of hypoxia-inducible factor-1alpha (HIF-1 alpha) and NF-kappa B in nuclear protein extracts, phosphorylation of Akt, and vascular permeability were increased after inhalation of H2O2 and that the administration of COMP-Ang1 markedly reduced airway hyper-responsiveness, pulmonary inflammation, plasma extravasation, and the increases of cytokines, adhesion molecules, and VEGF in lungs treated with H2O2. We have also found that the activation of HIF-1a and NF-kappa B and the increase of phosphoinositide 3-kinase activity in lung tissues after H2O2 inhalation were decreased by the administration of COMP-Ang1. These results suggest that COMP-Ang1 ameliorates ROS-induced acute lung injury through attenuating vascular leakage and modulating inflammatory mediators.
Acute Lung Injury/chemically induced/complications/*drug therapy/metabolism
;
Administration, Inhalation
;
Airway Resistance/drug effects
;
Animals
;
Bronchial Hyperreactivity/drug therapy/etiology
;
Bronchoalveolar Lavage Fluid
;
Capillary Permeability/*drug effects
;
Cytokines/antagonists & inhibitors
;
Female
;
Hydrogen Peroxide/adverse effects
;
Hypoxia-Inducible Factor 1, alpha Subunit/antagonists & inhibitors
;
Intercellular Adhesion Molecule-1/metabolism
;
Mice
;
Mice, Inbred BALB C
;
NF-kappa B/antagonists & inhibitors
;
Pneumonia/*drug therapy/etiology
;
Recombinant Fusion Proteins/*administration & dosage
;
Vascular Cell Adhesion Molecule-1/metabolism