1.Relevance of the expression of CTNNAL1 and the resistance of respiratory tract in rat with airway hyperresponsiveness.
Xiang LI ; Qiuxia CHEN ; Li SHEN ; Zhaohui XIE ; Jiansong ZHANG
Journal of Central South University(Medical Sciences) 2012;37(9):906-910
OBJECTIVE:
To observe the relation between the expression of CTNNAL1 and the airway resistance in rats with airway hyperresponsiveness.
METHODS:
Thirty Wister rats were randomly divided into 5 groups: a normal control group, a 2 d ozone attack group, a 4 d ozone attack group, a 6 d ozone attack group, and a 6 d ozone attack+2 d dexamethasone treatment group (6 rats in each group). The distribution of CTNNAL1 was observed by in situ hybridization; the expression of CTNNAL1 was detected by fluorescence quantitative RT-PCR; the airway resistance was detected in by Buxco pulmonary function analysis system; and the relevance of the expression of CTNNAL1 and the resistance of respiratory tract in rat with airway hyperresponsiveness were analyzed.
RESULTS:
CTNNAL1 was distributed in bronchial epithelial cells, goblet cells, endothelial cells, and the alveolar wall. With the increase of the ozone attack, the expression of CTNNAL1 mRNA gradually reduced, the airway hyperresponsiveness was aggravated, and the airway resistance was increased.
CONCLUSION
During airway hyperresponse, the reduction of CTNNAL1 mRNA can increase the airway resistance. There is a negative correlation between the reduction of CTNNAL1 mRNA and the airway hyperresponsiveness. CTNNAL1 is an adhesion molecule related to airway hyperresponsiveness susceptibility.
Airway Resistance
;
Animals
;
Bronchial Hyperreactivity
;
chemically induced
;
metabolism
;
physiopathology
;
Female
;
Inflammation
;
chemically induced
;
physiopathology
;
Male
;
Ozone
;
RNA, Messenger
;
genetics
;
metabolism
;
Rats
;
Rats, Wistar
;
alpha Catenin
;
genetics
;
metabolism
2.Measurement of airway resistance and reactivity in guinea pigs using double-chamber plethysmography.
Wei-min YAO ; Ke-fang LAI ; Yuan-ming LUO ; Chun-li LIU ; Ru-chong CHEN ; Wei LUO ; Nan-shan ZHONG
Journal of Southern Medical University 2009;29(5):841-843
OBJECTIVETo establish a method for measurement of airway resistance (sRaw) and reactivity in guinea pigs.
METHODSMethacholine spray at gradient concentrations was given to guinea pigs. PC100 was defined as the concentration of methacholine when the sRaw doubled in the guinea pigs using a double-chamber plethysmograph. The time for the recovery of PC100 resistance to baseline levels was measured. The sRaw and PC100 were measured twice on days 1 and 15 (4 time points) in the guinea pigs before and after OVA challenge.
RESULTSPC100 in a normal guinea pig airway was shown to recover the baseline level within 1 h. Double-chamber plethysmographical measurement of the sRaw and PC100 in normal guinea pigs did not show significant differences between the time points [sRaw: 3.25-/+0.67, 3.33-/+0.58, 3.30-/+0.56, and 3.32-/+0.75 cm H2O.s; log2PC100: 8.48-/+0.94, 8.64-/+1.04, 8.56-/+0.67, and 8.64-/+0.60, respectively, P>0.05]. The sRaw and airway reactivity were significantly increased in guinea pigs challenged with OVA [sRaw: 7.08-/+1.82 vs 2.87-/+0.53 cmH2O.s, P<0.01; log2PC100: 6.64-/+1.26 vs 8.48-/+1.17, P<0.01].
CONCLUSIONA double-chamber plethysmography for measurement of sRaw and airway reactivity in guinea pig is established successfully.
Airway Resistance ; Animals ; Asthma ; chemically induced ; physiopathology ; Bronchial Hyperreactivity ; etiology ; physiopathology ; Guinea Pigs ; Male ; Methacholine Chloride ; Plethysmography ; instrumentation ; methods ; Random Allocation
3.To explore the mechanisms of neurogenic inflammation and airway hyperresponsiveness of rat by inhaled sulfur.
Han-Jun LIN ; Hao-Wen QI ; Li-Ping FANG ; Shu-Jun LI ; Zhi-Chao LI ; Bai-Mei XIE
Chinese Journal of Applied Physiology 2009;25(1):113-116
AIMTo explore the physiopathological mechanisms of airway injury and the effect on the airway responsiveness of rat by inhaled sulfur dioxide(SO2).
METHODSSixteen SD male rats were divided randomly into 2 groups (n = 8): the control group and SO2 group. The control group was exposed o pure air. SO2 group was exposed to SO2 of the content 1.0 mg/(m(3) x h) 6h daily for consecutive 3 d. At 4th day, we determined the airway responsiveness, collected the bronchoalveolar lavage fluid (BALF), plasma and lung tissue. Then we counted the total cellular score in BALF, measured the plasma SP content and made the immunohistochemistry staining on the lung tissue (HE and SP methods).
RESULTSCompared with the control group, the total cellular score in BALF and plasma SP content in SO2 group's increased significantly ( P < 0.01). HE staining showed there were a great deal of inflammatory cells infiltration under the tunica mucosa bronchiorum; and SP immunohistochemistry staining indicated there were significant changes in numbers of SP-IR positive fibers of SO2group.
CONCLUSIONExposure to low concentration of SO2 would injure healthy rat's airway, and induce airway hyperresponsiveness, neurogenic inflammation is one of its critical pathophysiological mechanisms.
Air Pollutants ; adverse effects ; Animals ; Asthma ; chemically induced ; Bronchi ; drug effects ; innervation ; physiopathology ; Bronchial Hyperreactivity ; chemically induced ; physiopathology ; Bronchitis ; chemically induced ; Bronchoalveolar Lavage Fluid ; cytology ; Male ; Nerve Fibers ; drug effects ; physiology ; Neurogenic Inflammation ; chemically induced ; physiopathology ; Random Allocation ; Rats ; Rats, Sprague-Dawley ; Substance P ; blood ; Sulfur Dioxide ; adverse effects
4.Temporal and spatial distribution of VIP, CGRP and their receptors in the development of airway hyperresponsiveness in the lungs.
Yan-Hong REN ; Xiao-Qun QIN ; Cha-Xiang GUAN ; Zi-Qiang LUO ; Chang-Qing ZHANG ; Xiu-Hong SUN
Acta Physiologica Sinica 2004;56(2):137-146
To explore the role of intrapulmonary neuropeptides in the development of airway hyperresponsiveness, we established an animal model of airway hyperresponsiveness (AHR) in rabbits by using ozone exposure. With the model, after test of the mechanics of respiration and bronchoalveolar lavage assay, the levels of vasoactive intestinal peptide (VIP) and calcitonin gene-related peptide (CGRP) in the lungs were determined by radioimmunoassay, and the expression of mRNA coding receptors of these two neuropeptides was evaluated by reverse transcriptional-polymerase chain reaction (RT-PCR). At the same time, the distribution of VIP receptor-1 (VIPR1) and CGRP receptor-1 (CGRPR1) in lung tissues and its time-course were examined by in situ hybridization. The results showed: (1) in ozone-stressing groups, airway resistance increased significantly and typical inflammatory pathological changes were observed in pulmonary tissue slides, including neutrophil and eosinophil infiltration, mucus exudation and bronchial epithelial cells (BECs) shedding; (2) with elongation of ozone exposure, the levels of VIP and CGRP in the lungs increased at first, reaching a peak on d 2 to 4, then decreased slowly, and CGRP peaked somewhat earlier than VIP; (3) mRNA expression of the two neuropeptide receptors in the lungs changed in a similar manner like VIP and CGRP, but the high level of mRNA expression of VIPR1 lasted longer than that of CGRPR1; and (4) in situ hybridization for neuropeptide receptors demonstrated that, in unstressed control, VIPR1 and CGRPR1 positive cells appeared in the airway epithelium, pulmonary interstitial and focal areas of airway and vascular smooth muscles. With the elongation of ozone exposure, hybridization stained deeper and the majority of positive cells were located around the vessels and bronchus except a few in the alveoli. At 8 d, only a small number of positive cells were seen in the lungs. From the results, it is concluded that ozone-stressing can induce the development of AHR, in which VIP and CGRP may play important roles. That implies, through binding to CGRPR1, CGRP stimulates an early inflammation response which contributes in cleaning up of irritants, while VIP exerts a later dampening of pulmonary inflammation response. These two neuropeptides may play sequential and complementary roles in the development of AHR.
Animals
;
Bronchi
;
pathology
;
Bronchial Hyperreactivity
;
chemically induced
;
metabolism
;
Bronchoalveolar Lavage Fluid
;
Calcitonin Gene-Related Peptide
;
metabolism
;
Epithelium
;
metabolism
;
Lung
;
metabolism
;
Ozone
;
Rabbits
;
Receptors, Calcitonin Gene-Related Peptide
;
metabolism
;
Receptors, Vasoactive Intestinal Peptide
;
metabolism
;
Vasoactive Intestinal Peptide
;
metabolism
5.Effects of N(omega)-nitro-L-arginine methyl ester and aminoguanidine on lipopolysaccharide-induced airway hyperresponsiveness in guinea pigs.
Hong-Ni JIANG ; Jie-Ming QU ; Li-Xian HE ; Xue-Hua CHEN ; Jue PAN ; Li LI ; Da-Nian ZHU ; Yin-Xiang CAO ; Lin-Lin SHEN
Chinese Medical Journal 2008;121(17):1693-1697
BACKGROUNDThe down-regulation of constitutive nitric oxide synthase (cNOS) and up-regulation of inducible nitric oxide synthase (iNOS) are associated with the allergen-provocated airway hyperresponsiveness (AHR). This study aimed to determine whether their alteration also plays an important role in the AHR induced by lipopolysaccharide (LPS).
METHODSHartley male guinea pigs, weighing between 250 g and 350 g, were injected with LPS at a dose of 1 mg/kg every 24 hours for three days. A non-selective NOS inhibitor, N(omega)-nitro-L-arginine methyl ester (L-NAME), or a selective inducible NOS inhibitor, aminoguanidine (AG), were used thirty minutes before each injection of LPS. Airway reactions, nitric oxide (NO) production and inflammatory changes were detected 24 hours after the last dose of LPS.
RESULTSAG significantly decreased the NO production in the bronchoalveolar lavage fluid (BALF) and sharply reduced the intensity of bronchoconstriction to histamine challenge. L-NAME also significantly decreased the NO production in the BALF, but had no effect on airway reactions or, perhaps, a tendency to enhance the intensity of AHR.
CONCLUSIONSThe data suggest that inducible NOS contributes to the AHR induced by repetitive intraperitoneal LPS, and constitutive NOS was also involved.
Airway Resistance ; drug effects ; Animals ; Bronchial Hyperreactivity ; chemically induced ; Enzyme Inhibitors ; pharmacology ; Guanidines ; pharmacology ; Guinea Pigs ; Lipopolysaccharides ; toxicity ; Male ; NG-Nitroarginine Methyl Ester ; pharmacology ; Nitric Oxide ; biosynthesis ; Nitric Oxide Synthase ; antagonists & inhibitors ; physiology
6.Inhibitory effects of sunitinib on ovalbumin-induced chronic experimental asthma in mice.
Mao HUANG ; Xuan LIU ; Qiang DU ; Xin YAO ; Kai-sheng YIN
Chinese Medical Journal 2009;122(9):1061-1066
BACKGROUNDTyrosine kinase signaling cascades play a critical role in the pathogenesis of allergic airway inflammation. Sunitinib, a multitargeted receptor tyrosine kinase inhibitor, has been reported to exert potent immunoregulatory, anti-inflammatory and anti-fibrosis effects. We investigated whether sunitinib could suppress the progression of airway inflammation, airway hyperresponsiveness (AHR), and airway remodeling in a murine model of chronic asthma.
METHODSOvalbumin (OVA)-sensitized mice were chronically challenged with aerosolized OVA for 8 weeks. Some mice were intragastrically administered with sunitinib (40 mg/kg) daily during the period of OVA challenge. Twelve hours after the last OVA challenge, mice were evaluated for the development of airway inflammation, AHR and airway remodeling. The levels of total serum immunoglobulin E (IgE) and Th2 cytokines (interleukin (IL)-4 and IL-13) in bronchoalveolar lavage fluid (BALF) were measured by ELISA. The expression of phosphorylated c-kit protein in the lungs was detected by immunoprecipitation/Western blotting (IP/WB) analysis.
RESULTSSunitinib significantly inhibited eosinophilic airway inflammation, persistent AHR and airway remodeling in chronic experimental asthma. It reduced levels of total serum IgE and BALF Th2 cytokines and also lowered the expression of phosphorylated c-kit protein in remodelled airways.
CONCLUSIONSSunitinib may inhibit the development of airway inflammation, AHR and airway remodeling. It is potentially beneficial to the prevention or treatment of asthma.
Angiogenesis Inhibitors ; pharmacology ; Animals ; Asthma ; chemically induced ; drug therapy ; immunology ; Blotting, Western ; Bronchial Hyperreactivity ; chemically induced ; immunology ; Bronchoalveolar Lavage Fluid ; chemistry ; Female ; Immunoglobulin E ; blood ; Immunohistochemistry ; Immunoprecipitation ; In Vitro Techniques ; Indoles ; pharmacology ; Inflammation ; chemically induced ; immunology ; Interleukin-13 ; metabolism ; Interleukin-4 ; metabolism ; Lung ; drug effects ; immunology ; metabolism ; Mice ; Mice, Inbred BALB C ; Ovalbumin ; pharmacology ; Proto-Oncogene Proteins c-kit ; metabolism ; Pyrroles ; pharmacology
7.Association between Recent Acetaminophen Use and Asthma: Modification by Polymorphism at TLR4.
Seung Hwa LEE ; Mi Jin KANG ; Ho Sung YU ; Kyungmo HONG ; Young Ho JUNG ; Hyung Young KIM ; Ju Hee SEO ; Ji Won KWON ; Byoung Ju KIM ; Ha Jung KIM ; Young Joon KIM ; Hee Suk KIM ; Hyo Bin KIM ; Kang Seo PARK ; So Yeon LEE ; Soo Jong HONG
Journal of Korean Medical Science 2014;29(5):662-668
The risk of asthma has been increasing in parallel with use of acetaminophen, which is a potential source of oxidative stress. Toll-like receptor 4 (TLR4) plays a critical role not only in innate immunity, but also in mediating reactive oxygen species induced inflammation. Therefore, we investigated associations between acetaminophen usage and TLR4 polymorphism on asthma and bronchial hyperresponsiveness (BHR). The number of 2,428 elementary school children in Seoul and Jeongeup cities was recruited. Subjects who used acetaminophen with a family history of asthma had an increased risk of both asthma diagnosis ever and current asthma. Individuals with CT+TT genotypes at the TLR4 polymorphism, in combination with acetaminophen usage, also demonstrated an increased risk of asthma diagnosis ever (aOR, 2.08; 95% confidence interval [CI], 1.10-3.92). Family history of asthma and acetaminophen usage were risk factors for BHR. Although TLR4 was not an independent risk factor for BHR, individuals with CT+TT genotypes at the TLR4 polymorphism had an increased risk of BHR when combined with acetaminophen usage (aOR, 1.74; 95% CI, 1.03-2.94). In conclusion, acetaminophen usage may be associated with asthma and BHR in genetically susceptible subjects. This effect may be modified by polymorphism at TLR4.
Acetaminophen/*adverse effects/therapeutic use
;
Adolescent
;
Asthma/chemically induced/epidemiology/*genetics
;
Bronchial Hyperreactivity/chemically induced/epidemiology/*genetics
;
Child
;
Cross-Sectional Studies
;
Eosinophils/immunology
;
Female
;
Genetic Predisposition to Disease
;
Genotype
;
Humans
;
Immunoglobulin E/blood/immunology
;
Inflammation/immunology
;
Male
;
Oxidative Stress/drug effects
;
Polymorphism, Single Nucleotide
;
Questionnaires
;
Reactive Oxygen Species/immunology
;
Risk
;
Risk Factors
;
Toll-Like Receptor 4/*genetics
8.Volatile Organic Compounds Contribute to Airway Hyperresponsiveness.
An Soo JANG ; Inseon S CHOI ; Young Il KOH ; Choon Sik PARK
The Korean Journal of Internal Medicine 2007;22(1):8-12
BACKGROUND: Volatile organic compounds (VOCs) in concentrations found in both the work and home environments may influence lung function. We investigated the prevalence of airway responsiveness in workers exposed to VOCs. METHODS: We used allergic skin tests, nonspecific airway hyperresponsiveness testing and questionnaires to study twenty exposed workers and twenty-seven control subjects. Atopy was defined as a reactor who showed >3+ response to one or more allergens on the skin prick tests. Airway hyperresponsiveness (BRindex) was defined as log [% fall of FEV1/ log (last concentration of methacholine) +10]. RESULTS: The VOC exposed workers, in comparison with the control subjects, tended to have a higher BRindex (1.19+/-0.07 vs. 1.15+/-0.08, respectively). Workers exposed to VOCs with atopy or smoker, as compared with the workers exposed to VOCs with non-atopy and who were non-smokers and the control subjects with non-atopy and who were non-smokers, had a significantly higher BRindex (1.20+/-0.05 vs. 1.14+/-0.06 vs. 1.10+/-0.03, respectively p<0.05). The BRindex was not correlated with atopy, the smoking status or the duration of VOC exposure. CONCLUSIONS: These findings suggest that VOCs may act as a contributing factor of airway hyperresponsiveness in workers exposed to VOCs.
Smoking
;
Skin Tests
;
Risk Factors
;
Questionnaires
;
Organic Chemicals/*toxicity
;
Occupational Exposure/*adverse effects
;
Occupational Diseases/*chemically induced
;
Multiple Chemical Sensitivity
;
Male
;
Korea
;
Humans
;
Forced Expiratory Volume
;
Female
;
Chemical Industry
;
Case-Control Studies
;
Bronchial Hyperreactivity/*chemically induced
;
Air Pollutants, Occupational/*toxicity
;
Adult
9.Effect of San'ao Decoction on the airway inflammation and hyperresponsiveness in a murine model of lipopolysaccharide-enhanced asthma.
Peng-Cheng GU ; Xin-Sheng FAN ; Chen-Xue JIANG ; Hui-Qin XU ; Jing-Hua YU ; Yu-Ping TANG
Chinese journal of integrative medicine 2011;17(7):537-541
OBJECTIVESan'ao Decoction (, SAD), as a representative Chinese medicine (CM) formula, was chosen to evaluate the effect of airway inflammation and hyperresponsiveness on the lipopolysaccharide (LPS) enhanced asthma model.
METHODSThe asthma model was reproduced in the Balb/C mice sensitized by ovalbumin (OVA), challenged by OVA and LPS. After Balb/C mice's administration of a dose (0.0024 g/kg) of dexamethasone acetate, and three doses (2.2 g/kg, 4.4 g/kg and 8.8 g/kg) of SAD, airway inflammation and responsiveness were observed. The airway inflammation was detected by counting bronchoalveolar lavage fluid (BALF) cells and lung histopathology. Also, differential expressions of interferon-r (IFN-γ), interleukin-4 (IL-4), and IL-5 in the supernatants of BALF were examined. The changes in airway responsiveness indicated by lung resistance (R(L)) and stimulated by acetylcholine (Ach) were determined.
RESULTSSmall-dose SAD hardly inhibit airway inflammation or hyperresponsiveness in the LPS-enhanced asthma, while medium-dose and high-dose SAD significantly inhibited the airway hyperresponsiveness, and to some extent, reduced airway inflammation. Meanwhile, the small-dose, medium-dose, and high-dose SAD promoted Th1-type cytokines (IFN-γ) and reduced Th2-type cytokines (IL-4, IL-5) to different extents, which led to a Th1/Th2 balance.
CONCLUSIONSAD has a good therapeutic effect on airway hyperresponsiveness in the LPS-enhanced asthma model, but its definite influence on airway inflammation is not remarkable.
Animals ; Asthma ; chemically induced ; complications ; drug therapy ; physiopathology ; Bronchial Hyperreactivity ; complications ; drug therapy ; pathology ; Bronchoalveolar Lavage Fluid ; cytology ; Cell Count ; Disease Models, Animal ; Drugs, Chinese Herbal ; therapeutic use ; Female ; Interferon-gamma ; metabolism ; Interleukin-4 ; metabolism ; Interleukin-5 ; metabolism ; Lipopolysaccharides ; Lung ; pathology ; physiopathology ; Mice ; Mice, Inbred BALB C ; Pneumonia ; complications ; drug therapy ; pathology
10.The effects of pycnogenol on antioxidant enzymes in a mouse model of ozone exposure.
Min Sung LEE ; Kuk Young MOON ; Da Jeong BAE ; Moo Kyun PARK ; An Soo JANG
The Korean Journal of Internal Medicine 2013;28(2):216-223
BACKGROUND/AIMS: Ozone is an environmentally reactive oxidant, and pycnogenol is a mixture of flavonoid compounds extracted from pine tree bark that have antioxidant activity. We investigated the effects of pycnogenol on reactive nitrogen species, antioxidant responses, and airway responsiveness in BALB/c mice exposed to ozone. METHODS: Antioxidant levels were determined using high performance liquid chromatography with electrochemical detection. Nitric oxide (NO) metabolites in bronchoalveolar lavage (BAL) fluid from BALB/c mice in filtered air and 2 ppm ozone with pycnogenol pretreatment before ozone exposure (n = 6) were quantified colorimetrically using the Griess reaction. RESULTS: Uric acid and ascorbic acid concentrations were significantly higher in BAL fluid following pretreatment with pycnogenol, whereas gamma-tocopherol concentrations were higher in the ozone exposed group but were similar in the ozone and pycnogenol pretreatment groups. Retinol and gamma-tocopherol concentrations tended to increase in the ozone exposure group but were similar in the ozone and pycnogenol pretreatment groups following ozone exposure. Malonylaldehyde concentrations increased in the ozone exposure group but were similar in the ozone and pycnogenol plus ozone groups. The nitrite and total NO metabolite concentrations in BAL fluid, which parallel the in vivo generation of NO in the airways, were significantly greater in the ozone exposed group than the group exposed to filtered air, but decreased with pycnogenol pretreatment. CONCLUSIONS: Pycnogenol may increase levels of antioxidant enzymes and decrease levels of nitrogen species, suggesting that antioxidants minimize the effects of acute ozone exposure via a protective mechanism.
Animals
;
Antioxidants/*pharmacology
;
Ascorbic Acid/metabolism
;
Bronchial Hyperreactivity/chemically induced/metabolism/*prevention & control
;
Bronchoalveolar Lavage Fluid/chemistry
;
Bronchoconstriction/drug effects
;
Disease Models, Animal
;
Female
;
Flavonoids/*pharmacology
;
Inhalation Exposure
;
Lung/*drug effects/enzymology/physiopathology
;
Malondialdehyde/metabolism
;
Mice
;
Mice, Inbred BALB C
;
Nitric Oxide/metabolism
;
Oxidative Stress/*drug effects
;
*Ozone
;
Uric Acid/metabolism
;
Vitamin A/metabolism
;
alpha-Tocopherol/metabolism