2.Dexamethasone decreases IL-29 expression in house dust mite-stimulated human bronchial epithelial cells.
Journal of Huazhong University of Science and Technology (Medical Sciences) 2015;35(6):823-827
The aim of this study was to explore the effect of IL-29 on the progression of airway allergic disease by detecting the level of IL-29 in airway allergic cell models stimulated by house dust mite (HDM) in the presence or absence of dexamethasone (DEX). The same batch of human bronchial epithelial cells in exponential growth phase was randomly divided into five groups: blank group (A), 300 ng/mL HDM group (B), 1000 ng/mL HDM group (C), 3000 ng/mL HDM group (D), and 300 ng/mL HDM+100 ng/mL DEX group (E). The IL-29 mRNA expression was detected by quantitative reverse transcription polymerase chain reaction (qRT-PCR). The IL-29 protein expression in cell suspension was detected by ELISA. The results showed that after stimulation with HDM for 24 h, the expression of IL-29 was increased significantly, and after co-stimulation with HDM and DEX for 24 h, the expression of IL-29 in group E was significantly lower than that in the groups stimulated by HDM alone but higher than that in the group A. The differences between the different groups were significant (F=132.957, P<0.01). Additionally, the higher the concentration of HDM was, the more significant the increase in the IL-29 expression was. In conclusion, IL-29 may play a role in the progression of airway allergic disease including asthma.
Adult
;
Animals
;
Bronchi
;
cytology
;
drug effects
;
metabolism
;
Cells, Cultured
;
Dexamethasone
;
pharmacology
;
Epithelial Cells
;
drug effects
;
metabolism
;
Humans
;
Interleukins
;
metabolism
;
Mites
3.Hydrogen peroxide induces high mobility group box 1 release in human bronchial epithelial cells.
Changchun HOU ; Haijin ZHAO ; Wenjun LI ; Shaoxi CAI
Journal of Southern Medical University 2012;32(8):1131-1134
OBJECTIVETo investigate the effect of hydrogen dioxide (H(2)O(2)) on the release and translocation of high mobility group box 1 release (HMGB1) from normal human bronchiolar epithelial cells (HBE).
METHODSMTT assay was used to assess the viability of HBE135-E6E7 cells exposed to different concentrations of H(2)O(2). The expression and location of HMGB1 in the cytoplasm, nuclei and culture medium of the exposed cells were determined using Western blotting and immunofluorescence assay.
RESULTSExposure to 125 µmmol/L H(2)O(2) did not obviously affect the cell viability. At the concentration of 250 µmmol/L, H(2)O(2) significantly decreased the cell viability (P<0.05), but significant cell death occurred only after exposure to 400 µmmol/L H(2)O(2) (P=0.000). Compared with the control cells, the cells exposed to 12.5, 125 and 250 µmmol/L H(2)O(2) for 24 h showed significantly increased levels of HMGB1 in the culture medium (P<0.05), and exposure to 125 µmmol/L H(2)O(2) for 12 and 24 h also caused significantly increased HMGB1 level (P<0.05). Exposure to 125 µmmol/L H(2)O(2) for 24 h significantly increased HMGB1 expression in the cytoplasm but decreased its expression in the nucleus. HMGB1 translocation from the nuclei to the cytoplasm and to the plasmalemma occurred after 125 µmmol/L H(2)O(2) exposure for 12 h and 24 h, respectively.
CONCLUSIONH(2)O(2) can induce HMGB1 translocation and release in human bronchial epithelial cells, suggesting the involvement of HMGB1 in airway oxidative stress in chronic inflammatory diseases such as asthma and COPD.
Bronchi ; cytology ; Cell Line ; Epithelial Cells ; drug effects ; metabolism ; HMGB1 Protein ; drug effects ; metabolism ; Humans ; Hydrogen Peroxide ; pharmacology ; Protein Transport
4.Effect of thymic stromal lymphopoietin on human bronchial epithelial permeability.
Wenjia LI ; Haijin ZHAO ; Hangming DONG ; Fei ZOU ; Shaoxi CAI
Journal of Southern Medical University 2014;34(6):802-806
OBJECTIVETo investigate the effect of thymic stromal lymphopoietin (TSLP) on the permeablily of monolayer bronchial epithelial cells in vitro.
METHODSCultured human bronchial epithelial cell line 16HBE was exposed to 0.1 or 1 ng/ml TSLP for 0, 0.5, 6, 12, or 24 h, and the epithelial monolayer permeability was assessed by measuring transepithelial electrical resistance (TER), permeability to FITC-labeled dextran (FITC-DX) and expression of E-cadherin.
RESULTSCompared with the control cells group, 16HBE cell monolayer showed significantly increased TER (P<0.001) and decreased FITC-DX fluorescence in the lower chamber (P<0.05) following exposure to 0.1 and 1 ng/ml TSLP, but these changes were not dose-dependent. Exposure to 0.1 ng/ml TSLP resulted in significantly increased expression of E-cadherin. The 16HBE monolayer exposed to 0.1 ng/ml TSLP for 24 h showed the most obvious increase of TER and E-cadherin expression (P<0.05); FITC-DX fluorescence level was markedly decreased after TSLP exposure for 12 h and 24 h (P<0.05), and the effect was more obvious in 12 h group.
CONCLUSIONTSLP can protect the barrier function of normal bronchial epithelial cells in vitro.
Bronchi ; cytology ; Cadherins ; metabolism ; Cell Line ; Cytokines ; pharmacology ; Epithelial Cells ; drug effects ; Humans ; Permeability
5.1,25-dihydroxyvitamin D3 pretreatment inhibits house dust mite-induced thymic stromal lymphopoietin release by human airway epithelial cells.
Liqin ZHOU ; Hangming DONG ; Haijin ZHAO ; Mengchen ZOU ; Lihong YAO ; Fei ZOU ; Shaoxi CAI
Journal of Southern Medical University 2014;34(4):492-496
OBJECTIVETo investigate the effect of 1,25-dihydroxyvitamin D3 (1,25VD3) on house dust mites (HDM)-induced expression of thymic stromal lymphopoietin (TSLP) in human airway epithelial cells in vitro.
METHODSHuman airway epithelial 16HBE cells were incubated with 200, 400, and 800 U/L in the absence or presence of 1,25VD3 (10(-8) mol/L) for 6 h and 24 h, and TSLP mRNA and protein expressions in the cells were assessed using quantitative PCR and ELISA.
RESULTS16HBE cells incubated with HDM at 200, 400, and 800 U/L showed significantly increased TSLP mRNA and protein expressions (P<0.05). Pretreatment of the cells with 1,25VD3 obviously lowered 400 U/L HDM-induced TSLP expressions (P<0.05), but 1,25VD3 added along with HDM in the cells did not produce significant effects on TSLP expressions (P=0.58).
CONCLUSIONBoth 1,25VD3 and HDM can induce TSLP expression and release in 16HBE cells, but pretreatment with 1,25VD3 can decrease HDM-augmented TSLP expression in the cells.
Animals ; Bronchi ; cytology ; Calcitriol ; pharmacology ; Cell Line ; Cytokines ; metabolism ; Epithelial Cells ; drug effects ; metabolism ; Humans ; Pyroglyphidae
6.Menthol enhances interleukin-13-induced synthesis and secretion of mucin 5AC in human bronchial epithelial cells.
Mingyang ZHANG ; Jing WANG ; Minchao LI
Journal of Southern Medical University 2020;40(10):1432-1438
OBJECTIVE:
To investigate the effect of interleukin (IL) -13 combined with cold stimulation on synthesis and secretion of mucin (MUC) 5AC in human bronchial epithelial cell line 16HBE and explore the role of transient receptor potential 8 (TRPM8) and anti-apoptotic factor B-cell lymphoblast-2 (Bcl-2) in this process.
METHODS:
16HBE cells were stimulated with 10 ng/mL IL-13, 1 mmol/L menthol, or both (1 mmol/L menthol was added after 6 days of IL-13 stimulation), and the changes in the expression of MUC5AC, intracellular Ca
RESULTS:
The mRNA and protein expressions of MUC5AC increased significantly in 16HBE cells following stimulation with IL-13, menthol, and both (
CONCLUSIONS
Menthol combined with IL-13 produces a synergistic effect to promote the synthesis and secretion of MUC5AC in 16HBE cells possibly by activating TRPM8 receptor to upregulate the expression of Bcl-2.
Bronchi
;
Epithelial Cells/drug effects*
;
Humans
;
Interleukin-13
;
Menthol/pharmacology*
;
Mucin 5AC
7.The influence of SiO2 on epithelial-mesenchymal transition (EMT) in human bronchial epithelial cells.
Guan-nan LIANG ; Jian-hua ZHOU ; Yong-bin HU ; Xiang LI ; Zhen-qin GAO ; Hai-ying JIANG
Chinese Journal of Industrial Hygiene and Occupational Diseases 2011;29(1):7-10
OBJECTIVETo investigate SiO2-induced EMT in human bronchial epithelial cells HBE in vitro.
METHODSHBE cells were cultured and then stimulated with indicated doses of SiO2 (0, 50, 100, 200, 300 µg/ml). The morphological changes were observed by microscope. In addition, Western blot was per-formed to detect the expression of E-cad, α-SMA and Vim. The changes of migration ability were examined by wound-healing assay in vitro.
RESULTS(1) After exposure to SiO2, HBE cells lost contact with their neighbor and displayed a spindle-shape, fibroblast-like morphology. (2) Compared with the control, the E-cad (300 µg/ml group) expression downregulated 2.98 fold (P < 0.05), and the Vim (300 µg/ml group) and α-SMA (200 µg/ml group) expression upregulated 4.46 fold and 3.55 fold (P < 0.05). There were significant differences between 100, 200, 300 µg/ml groups and the control group (P < 0.05). (3) In the test group, the percentage of wound-healing areas/wound areas were larger than those in control group (P < 0.05).
CONCLUSIONSSiO2 could induce EMT in human bronchial epithelial cells.
Bronchi ; cytology ; Cells, Cultured ; Epithelial Cells ; cytology ; drug effects ; Epithelial-Mesenchymal Transition ; drug effects ; Humans ; Silicon Dioxide ; adverse effects ; Stromal Cells ; cytology ; drug effects
8.Construction of cDNA subtractive library of the malignant transformation cells of bronchial epithelial cells induced by mineral powder in Gejiu.
Rui LIANG ; Ke-wei JIN ; Zhi-qiang WANG
Chinese Journal of Industrial Hygiene and Occupational Diseases 2009;27(4):242-244
Bronchi
;
drug effects
;
pathology
;
Cell Line
;
Cell Transformation, Neoplastic
;
drug effects
;
genetics
;
Dust
;
Epithelial Cells
;
drug effects
;
pathology
;
Gene Library
;
Humans
;
Minerals
;
toxicity
9.Characteristics of Atmospheric Fine Particulate Matter (PM ) Induced Differentially Expressed Proteins Determined by Proteomics and Bioinformatics Analyses.
Kai ZHENG ; Ying CAI ; Bing Yu WANG ; Shuang Jian QIN ; Bo Ru LI ; Hai Yan HUANG ; Xiao Yun QIN ; Ding Xin LONG ; Zhao Hui ZHANG ; Xin Yun XU
Biomedical and Environmental Sciences 2020;33(8):583-592
Objective:
To screen the differentially expressed proteins (DEPs) in human bronchial epithelial cells (HBE) treated with atmospheric fine particulate matter (PM ).
Methods:
HBE cells were treated with PM samples from Shenzhen and Taiyuan for 24 h. To detect overall protein expression, the Q Exactive mass spectrometer was used. Gene ontology (GO), Kyoto encyclopedia of genes and genomes (KEGG), and Perseus software were used to screen DEPs.
Results:
Overall, 67 DEPs were screened in the Shenzhen sample-treated group, of which 46 were upregulated and 21 were downregulated. In total, 252 DEPs were screened in the Taiyuan sample-treated group, of which 134 were upregulated and 118 were downregulated. KEGG analysis demonstrated that DEPs were mainly enriched in ubiquitin-mediated proteolysis and HIF-1 signal pathways in Shenzhen PM samples-treated group. The GO analysis demonstrated that Shenzhen sample-induced DEPs were mainly involved in the biological process for absorption of various metal ions and cell components. The Taiyuan PM -induced DEPs were mainly involved in biological processes of protein aggregation regulation and molecular function of oxidase activity. Additionally, three important DEPs, including ANXA2, DIABLO, and AIMP1, were screened.
Conclusion
Our findings provide a valuable basis for further evaluation of PM -associated carcinogenesis.
Air Pollutants
;
analysis
;
Bronchi
;
drug effects
;
metabolism
;
Computational Biology
;
Epithelial Cells
;
drug effects
;
metabolism
;
Gene Expression
;
drug effects
;
Humans
;
Mass Spectrometry
;
Particle Size
;
Particulate Matter
;
analysis
;
Proteomics
10.Expression of human beta-defensin-3 induced by lipopolysaccharide in human bronchial epithelial cells.
Jia LI ; Bing ZHANG ; Li-Li ZHONG
Chinese Journal of Contemporary Pediatrics 2009;11(7):577-580
OBJECTIVETo study the expression of human beta-defensin-3 (hBD-3) induced by lipopolysaccharide (LPS) in human bronchial epithelial (HBE) cells, and explore the role of hBD-3 in respiratory infection.
METHODSHBE cells were stimulated with different concentrations of LPS (0.01, 0.1, 1 and 10 microg/mL). hBD-3 mRNA expression was detected by RT-PCR 2 hrs later. hBD-3 protein expression was detected by Western blot 4 hrs later.
RESULTShBD-3 mRNA and protein was weakly expressed in normal HBE cells. LPS stimulation resulted in a significant increase of hBD-3 mRNA and protein expression (p<0.01). hBD-3 mRNA and protein expression increased with increasing LPS concentrations. There were significant differences in the hBD-3 mRNA and protein expression in cells stimulated by different concentrations of LPS (p<0.05).
CONCLUSIONSLPS can induce hBD-3 expression in a dose-dependent manner. hBD-3 might play a role in initial defensive reaction against bacterial invasion.
Bronchi ; drug effects ; metabolism ; Dose-Response Relationship, Drug ; Humans ; Lipopolysaccharides ; toxicity ; RNA, Messenger ; analysis ; beta-Defensins ; analysis ; genetics