1.A Comparison of Computed Tomography Measures for Diagnosing Cervical Spinal Stenosis Associated with Myelopathy: A Case-Control Study.
Brett A FREEDMAN ; C Edward HOFFLER ; Brian M CAMERON ; John M RHEE ; Maneesh BAWA ; David G MALONE ; Melissa BENT ; Tim S YOON
Asian Spine Journal 2015;9(1):22-29
STUDY DESIGN: Retrospective comparative study. PURPOSE: To assess differences in computed tomography (CT) imaging parameters between patients with cervical myelopathy and controls. OVERVIEW OF LITERATURE: There is a lack of information regarding the best predictor of symptomatic stenosis based on osseous canal dimensions. We postulate that smaller osseous canal dimensions increase the risk of symptomatic central stenosis. METHODS: CT images and medical records of patients with cervical myelopathy (19 patients, 8 males; average age, 64.4+/-13.4 years) and controls (18 patients, 14 males; average age, 60.4+/-11.0 years) were collected. A new measure called the laminar roof pitch angle (=angle between the lamina) was conducted along with linear measures, ratios and surrogates of canal perimeter and area at each level C2-C7 (222 levels). Receiver-operator curves were used to assess the diagnostic value of each. Rater reliability was assessed for the measures. RESULTS: The medial-lateral (ML) diameter (at mid-pedicle level) and calculated canal area (=anterior-posterior. x ML diameters) were the most accurate and highly reliable. ML diameter below 23.5 mm and calculated canal area below 300 mm2 generated 82% to 84% sensitivity and 67% to 68% sensitivity. No significant correlations were identified between age, height, weight, body mass in dex and gender for each of the CT measures. CONCLUSIONS: CT measures including ML dimensions were most predictive. This study is the first to identify an important role for the ML dimension in cases of slowly progressive compressive myelopathy. A ML reserve may be protective when the canal is progressively compromised in the anterior-posterior dimension.
Body Weight
;
Case-Control Studies*
;
Constriction, Pathologic
;
Humans
;
Male
;
Medical Records
;
Retrospective Studies
;
Spinal Cord Compression
;
Spinal Cord Diseases*
;
Spinal Stenosis*
2.High affinity soluble ILT2 receptor: a potent inhibitor of CD8(+) T cell activation.
Ruth K MOYSEY ; Yi LI ; Samantha J PASTON ; Emma E BASTON ; Malkit S SAMI ; Brian J CAMERON ; Jessie GAVARRET ; Penio TODOROV ; Annelise VUIDEPOT ; Steven M DUNN ; Nicholas J PUMPHREY ; Katherine J ADAMS ; Fang YUAN ; Rebecca E DENNIS ; Deborah H SUTTON ; Andy D JOHNSON ; Joanna E BREWER ; Rebecca ASHFIELD ; Nikolai M LISSIN ; Bent K JAKOBSEN
Protein & Cell 2010;1(12):1118-1127
Using directed mutagenesis and phage display on a soluble fragment of the human immunoglobulin super-family receptor ILT2 (synonyms: LIR1, MIR7, CD85j), we have selected a range of mutants with binding affinities enhanced by up to 168,000-fold towards the conserved region of major histocompatibility complex (MHC) class I molecules. Produced in a dimeric form, either by chemical cross-linking with bivalent polyethylene glycol (PEG) derivatives or as a genetic fusion with human IgG Fc-fragment, the mutants exhibited a further increase in ligand-binding strength due to the avidity effect, with resident half-times (t(1/2)) on the surface of MHC I-positive cells of many hours. The novel compounds antagonized the interaction of CD8 co-receptor with MHC I in vitro without affecting the peptide-specific binding of T-cell receptors (TCRs). In both cytokine-release assays and cell-killing experiments the engineered receptors inhibited the activation of CD8(+) cytotoxic T lymphocytes (CTLs) in the presence of their target cells, with subnanomolar potency and in a dose-dependent manner. As a selective inhibitor of CD8(+) CTL responses, the engineered high affinity ILT2 receptor presents a new tool for studying the activation mechanism of different subsets of CTLs and could have potential for the development of novel autoimmunity therapies.
Amino Acid Sequence
;
Antigens, CD
;
chemistry
;
genetics
;
pharmacology
;
Autoimmunity
;
Biological Assay
;
Cell Line
;
Cytotoxicity, Immunologic
;
genetics
;
immunology
;
Dose-Response Relationship, Immunologic
;
Humans
;
Immunoglobulins
;
immunology
;
metabolism
;
Immunologic Factors
;
chemistry
;
genetics
;
pharmacology
;
Kinetics
;
Leukocyte Immunoglobulin-like Receptor B1
;
Lymphocyte Activation
;
genetics
;
immunology
;
Major Histocompatibility Complex
;
genetics
;
immunology
;
Molecular Sequence Data
;
Molecular Targeted Therapy
;
Mutagenesis, Site-Directed
;
Peptide Library
;
Polyethylene Glycols
;
Protein Binding
;
genetics
;
immunology
;
Receptors, Immunologic
;
chemistry
;
genetics
;
Recombinant Fusion Proteins
;
genetics
;
metabolism
;
T-Lymphocytes, Cytotoxic
;
immunology
;
metabolism