1.Ketone ester supplementation of Atkinstype diet prolongs survival in an orthotopic xenograft model of glioblastoma
Hassan AZARI ; Angela POFF ; Dominic D’AGOSTINO ; Brent REYNOLDS
Anatomy & Cell Biology 2024;57(1):97-104
Heavy reliance on glucose metabolism and a reduced capacity to use ketone bodies makes glioblastoma (GBM) a promising candidate for ketone-based therapies. Ketogenic diet (KD) is well-known for its promising effects in controlling tumor growth in GBM. Moreover, synthetic ketone ester (KE) has demonstrated to increase blood ketone levels and enhance animal survival in a metastatic VM-M3 murine tumor model. Here, we compared the efficacy of a KE-supplemented Atkins-type diet (ATD-KE) to a classic KD in controlling tumor progression and enhancing survival in a clinically relevant orthotopic patient-derived xenograft GBM model. Our findings demonstrate that ATD-KE preserves body weight (percent change from the baseline; 112±2.99 vs. 116.9±2.52 and 104.8±3.67), decreases blood glucose (80.55±0.86 vs. 118.6±9.51 and 52.35±3.89 mg/dl), and increases ketone bodies in blood (1.15±0.03 mM vs. 0.55±0.04 and 2.66±0.21 mM) and brain tumor tissue (3.35±0.30 mM vs. 2.04±0.3 and 4.25±0.25 mM) comparable to the KD (results presented for ATD-KE vs. standard diet [STD] and KD, respectively). Importantly, the ATD-KE treatment significantly enhanced survival compared to the STD and was indistinguishable from the KD (47 days in STD vs. 56 days in KD and ATD-KE), suggesting that a nutritionally balanced low carbohydrate ATD combined with KE may be as effective as the KD alone in reducing brain tumor progression. Overall, these data support the rationale for clinical testing of KE-supplemented low-carb diet as an adjunct treatment for brain tumor patients.
2.Ketone ester supplementation of Atkinstype diet prolongs survival in an orthotopic xenograft model of glioblastoma
Hassan AZARI ; Angela POFF ; Dominic D’AGOSTINO ; Brent REYNOLDS
Anatomy & Cell Biology 2024;57(1):97-104
Heavy reliance on glucose metabolism and a reduced capacity to use ketone bodies makes glioblastoma (GBM) a promising candidate for ketone-based therapies. Ketogenic diet (KD) is well-known for its promising effects in controlling tumor growth in GBM. Moreover, synthetic ketone ester (KE) has demonstrated to increase blood ketone levels and enhance animal survival in a metastatic VM-M3 murine tumor model. Here, we compared the efficacy of a KE-supplemented Atkins-type diet (ATD-KE) to a classic KD in controlling tumor progression and enhancing survival in a clinically relevant orthotopic patient-derived xenograft GBM model. Our findings demonstrate that ATD-KE preserves body weight (percent change from the baseline; 112±2.99 vs. 116.9±2.52 and 104.8±3.67), decreases blood glucose (80.55±0.86 vs. 118.6±9.51 and 52.35±3.89 mg/dl), and increases ketone bodies in blood (1.15±0.03 mM vs. 0.55±0.04 and 2.66±0.21 mM) and brain tumor tissue (3.35±0.30 mM vs. 2.04±0.3 and 4.25±0.25 mM) comparable to the KD (results presented for ATD-KE vs. standard diet [STD] and KD, respectively). Importantly, the ATD-KE treatment significantly enhanced survival compared to the STD and was indistinguishable from the KD (47 days in STD vs. 56 days in KD and ATD-KE), suggesting that a nutritionally balanced low carbohydrate ATD combined with KE may be as effective as the KD alone in reducing brain tumor progression. Overall, these data support the rationale for clinical testing of KE-supplemented low-carb diet as an adjunct treatment for brain tumor patients.
3.Ketone ester supplementation of Atkinstype diet prolongs survival in an orthotopic xenograft model of glioblastoma
Hassan AZARI ; Angela POFF ; Dominic D’AGOSTINO ; Brent REYNOLDS
Anatomy & Cell Biology 2024;57(1):97-104
Heavy reliance on glucose metabolism and a reduced capacity to use ketone bodies makes glioblastoma (GBM) a promising candidate for ketone-based therapies. Ketogenic diet (KD) is well-known for its promising effects in controlling tumor growth in GBM. Moreover, synthetic ketone ester (KE) has demonstrated to increase blood ketone levels and enhance animal survival in a metastatic VM-M3 murine tumor model. Here, we compared the efficacy of a KE-supplemented Atkins-type diet (ATD-KE) to a classic KD in controlling tumor progression and enhancing survival in a clinically relevant orthotopic patient-derived xenograft GBM model. Our findings demonstrate that ATD-KE preserves body weight (percent change from the baseline; 112±2.99 vs. 116.9±2.52 and 104.8±3.67), decreases blood glucose (80.55±0.86 vs. 118.6±9.51 and 52.35±3.89 mg/dl), and increases ketone bodies in blood (1.15±0.03 mM vs. 0.55±0.04 and 2.66±0.21 mM) and brain tumor tissue (3.35±0.30 mM vs. 2.04±0.3 and 4.25±0.25 mM) comparable to the KD (results presented for ATD-KE vs. standard diet [STD] and KD, respectively). Importantly, the ATD-KE treatment significantly enhanced survival compared to the STD and was indistinguishable from the KD (47 days in STD vs. 56 days in KD and ATD-KE), suggesting that a nutritionally balanced low carbohydrate ATD combined with KE may be as effective as the KD alone in reducing brain tumor progression. Overall, these data support the rationale for clinical testing of KE-supplemented low-carb diet as an adjunct treatment for brain tumor patients.
4.Neurosphere and adherent culture conditions are equivalent for malignant glioma stem cell lines.
Maryam RAHMAN ; Karina REYNER ; Loic DELEYROLLE ; Sebastien MILLETTE ; Hassan AZARI ; Bryan W DAY ; Brett W STRINGER ; Andrew W BOYD ; Terrance G JOHNS ; Vincent BLOT ; Rohit DUGGAL ; Brent A REYNOLDS
Anatomy & Cell Biology 2015;48(1):25-35
Certain limitations of the neurosphere assay (NSA) have resulted in a search for alternative culture techniques for brain tumor-initiating cells (TICs). Recently, reports have described growing glioblastoma (GBM) TICs as a monolayer using laminin. We performed a side-by-side analysis of the NSA and laminin (adherent) culture conditions to compare the growth and expansion of GBM TICs. GBM cells were grown using the NSA and adherent culture conditions. Comparisons were made using growth in culture, apoptosis assays, protein expression, limiting dilution clonal frequency assay, genetic affymetrix analysis, and tumorigenicity in vivo. In vitro expansion curves for the NSA and adherent culture conditions were virtually identical (P=0.24) and the clonogenic frequencies (5.2% for NSA vs. 5.0% for laminin, P=0.9) were similar as well. Likewise, markers of differentiation (glial fibrillary acidic protein and beta tubulin III) and proliferation (Ki67 and MCM2) revealed no statistical difference between the sphere and attachment methods. Several different methods were used to determine the numbers of dead or dying cells (trypan blue, DiIC, caspase-3, and annexin V) with none of the assays noting a meaningful variance between the two methods. In addition, genetic expression analysis with microarrays revealed no significant differences between the two groups. Finally, glioma cells derived from both methods of expansion formed large invasive tumors exhibiting GBM features when implanted in immune-compromised animals. A detailed functional, protein and genetic characterization of human GBM cells cultured in serum-free defined conditions demonstrated no statistically meaningful differences when grown using sphere (NSA) or adherent conditions. Hence, both methods are functionally equivalent and remain suitable options for expanding primary high-grade gliomas in tissue culture.
Animals
;
Apoptosis
;
Brain
;
Caspase 3
;
Culture Techniques
;
Glioblastoma
;
Glioma*
;
Humans
;
Laminin
;
Neoplastic Stem Cells
;
Stem Cells*
;
Tics
;
Tubulin