1.HID-1 is a peripheral membrane protein primarily associated with the medial- and trans- Golgi apparatus.
Lifen WANG ; Yi ZHAN ; Eli SONG ; Yong YU ; Yaming JIU ; Wen DU ; Jingze LU ; Pingsheng LIU ; Pingyong XU ; Tao XU
Protein & Cell 2011;2(1):74-85
Caenorhabditis elegans hid-1 gene was first identified in a screen for mutants with a high-temperature-induced dauer formation (Hid) phenotype. Despite the fact that the hid-1 gene encodes a novel protein (HID-1) which is highly conserved from Caenorhabditis elegans to mammals, the domain structure, subcellular localization, and exact function of HID-1 remain unknown. Previous studies and various bioinformatic softwares predicted that HID-1 contained many transmembrane domains but no known functional domain. In this study, we revealed that mammalian HID-1 localized to the medial- and trans- Golgi apparatus as well as the cytosol, and the localization was sensitive to brefeldin A treatment. Next, we demonstrated that HID-1 was a peripheral membrane protein and dynamically shuttled between the Golgi apparatus and the cytosol. Finally, we verified that a conserved N-terminal myristoylation site was required for HID-1 binding to the Golgi apparatus. We propose that HID-1 is probably involved in the intracellular trafficking within the Golgi region.
Animals
;
Brefeldin A
;
pharmacology
;
Cell Line, Tumor
;
Cytosol
;
drug effects
;
metabolism
;
Humans
;
Intracellular Space
;
drug effects
;
metabolism
;
Membrane Proteins
;
metabolism
;
Protein Transport
;
drug effects
;
Rats
;
Vesicular Transport Proteins
;
metabolism
;
trans-Golgi Network
;
drug effects
;
metabolism
2.Baicalein protects HT22 murine hippocampal neuronal cells against endoplasmic reticulum stress-induced apoptosis through inhibition of reactive oxygen species production and CHOP induction.
Ji Hyun CHOI ; A Young CHOI ; Hana YOON ; Wonchae CHOE ; Kyung Sik YOON ; Joohun HA ; Eui Ju YEO ; Insug KANG
Experimental & Molecular Medicine 2010;42(12):811-822
Baicalein is one of the major flavonoids in Scutellaria baicalensis Georgi and possesses various effects, including cytoprotection and anti-inflammation. Because endoplasmic reticulum (ER) stress has been implicated in neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, and cerebral ischemia, we investigated the effects of baicalein on apoptotic death of HT22 mouse hippocampal neuronal cells induced by thapsigargin (TG) and brefeldin A (BFA), two representative ER stress inducers. Apoptosis, reactive oxygen species (ROS) production, and mitochondrial membrane potential (MMP) were measured by flow cytometry. Expression level and phosphorylation status of ER stress-associated proteins and activation and cleavage of apoptosis-associated proteins were analyzed by Western blot. Baicalein reduced TG- and BFA-induced apoptosis of HT22 cells and activation and cleavage of apoptosis-associated proteins, such as caspase-12 and -3 and poly(ADP-ribose) polymerase. Baicalein also reduced the TG- and BFA-induced expression of ER stress-associated proteins, including C/EBP homologous protein (CHOP) and glucose-regulated protein 78, the cleavage of X-box binding protein-1 and activating transcription factor 6alpha, and the phosphorylation of eukaryotic initiation factor-2alpha and mitogen-activated protein kinases, such as p38, JNK, and ERK. Knock-down of CHOP expression by siRNA transfection and specific inhibitors of p38 (SB203580), JNK (SP600125), and ERK (PD98059) as well as anti-oxidant (N-acetylcysteine) reduced TG- or BFA-induced cell death. Baicalein also reduced TG- and BFA-induced ROS accumulation and MMP reduction. Taken together, these results suggest that baicalein could protect HT22 neuronal cells against ER stress-induced apoptosis by reducing CHOP induction as well as ROS accumulation and mitochondrial damage.
Animals
;
*Apoptosis
;
Brefeldin A/pharmacology
;
Cell Line
;
Cytoprotection
;
DNA-Binding Proteins/metabolism
;
Endoplasmic Reticulum/drug effects/*physiology
;
Flavanones/*pharmacology
;
Heat-Shock Proteins/biosynthesis
;
Hippocampus/cytology
;
Membrane Potential, Mitochondrial/drug effects
;
Mice
;
Mitogen-Activated Protein Kinases/metabolism
;
Neurons/*drug effects/physiology
;
Reactive Oxygen Species/*metabolism
;
Signal Transduction/drug effects
;
Thapsigargin/pharmacology
;
Transcription Factor CHOP/*biosynthesis
;
Transcription Factors/metabolism
;
Unfolded Protein Response/drug effects