1.Rapidly Growing Bilateral Pseudoangiomatous Stromal Hyperplasia of the Breast.
Eun Mi RYU ; In Yong WHANG ; Eun Deok CHANG
Korean Journal of Radiology 2010;11(3):355-358
A tumoral pseudoangiomatous stromal hyperplasia (PASH) that causes huge breast enlargement is very rare. Only two cases of huge tumoral PASHs have been reported in the English medical literature. We report here on a surgically confirmed case of bilateral huge tumoral PASH in a 47-year-old woman, and we present the imaging and histopathology findings. We also review the relevant medical literature.
Angiomatosis/*pathology/surgery/ultrasonography
;
Biopsy, Needle
;
Breast/cytology/pathology/surgery
;
Breast Diseases/*pathology/surgery/ultrasonography
;
Contrast Media/diagnostic use
;
Diagnosis, Differential
;
Female
;
Gadolinium DTPA/diagnostic use
;
Humans
;
Hyperplasia
;
Image Enhancement/methods
;
Magnetic Resonance Imaging/methods
;
Mammography/methods
;
Middle Aged
;
Stromal Cells/pathology
2.Radiofrequency ablation inhibits lung metastasis ofbreast cancer in mice.
Zhenling DENG ; Wanjiu ZHANG ; Yue HAN ; Shuren ZHANG
Chinese Journal of Oncology 2015;37(7):497-500
OBJECTIVETo explore the effects of radiofrequency ablation(RFA) on immune system and lung metastasis in a mouse model of triple negative breast cancer 4T1.
METHODSMouse breast cancer 4T1 cells were injected into the right hind limb of female Bal B/c mice. When the tumor size was 6-8 mm in diameter, RFA was used to treat the transplanted breast cancer in mice. We examined the splenic lymphocyte subsets by flow cytometry at different time points after RFA. Fourteen days after treatment, we sacrificed the mice of both control and treatment groups, counted the number of lung metastatic nodules, and detected the changes of splenic lymphocyte subsets by flow cytometry.
RESULTSRFA basically eliminated the orthotopic carcinoma with a low local recurrence rate. After the RFA treatment, the amount of spleic CD4⁺ T cells, CD8⁺ T cells, B cells, NK and NKT cells was increased. Fourteen days after the RFA treatment, all mice were sacrificed, and the lung metastatic nodules were 24 ± 18 in the control group and 81 ± 35 in the RFA-treated group (P = 0.012). The mechanism of suppression of metastatic lung cancers was related to the increase of splenic CD4⁺ T cells, CD8⁺ T cells, B cells and NK cells, and the decrease of myeloid-derived suppressor cells.
CONCLUSIONSRFA can enhance the anti-tumor immunity and effectively inhibit lung metastasis of 4T1 cell-induced breast cancer, and has a good potential effect in the treatment of triple-negative breast cancer and the control of distant metastasis.
Animals ; B-Lymphocytes ; cytology ; CD4-Positive T-Lymphocytes ; cytology ; CD8-Positive T-Lymphocytes ; cytology ; Catheter Ablation ; Female ; Flow Cytometry ; Humans ; Killer Cells, Natural ; cytology ; Lung Neoplasms ; immunology ; prevention & control ; secondary ; Mice ; Mice, Inbred BALB C ; Neoplasm Recurrence, Local ; Triple Negative Breast Neoplasms ; immunology ; pathology ; surgery ; Tumor Burden
3.Protective effect of dexrazoxane on cardiotoxicity in breast cancer patients who received anthracycline-containing chemotherapy.
Pei WANG ; Sheng ZHANG ; Xiao-bei ZHANG ; Wen-jin LI ; Xiao-meng HAO ; Jin ZHANG
Chinese Journal of Oncology 2013;35(2):135-139
OBJECTIVETo evaluate the cardioprotective effects of dexrazoxane (DEX) on breast cancer patients who received anthracycline-containing chemotherapy.
METHODSA total of 122 breast cancer patients after operation were randomly divided into two groups: The experimental group of 61 cases treated with EPI plus DEX (DEX:EPI = 10:1) as adjuvant chemotherapy regimen, and the control group of 61 cases treated with EPI but without DEX. All patients received four cycles of adjuvant chemotherapy and their changes of specific cardiac functional status and hematology status before and after chemotherapy, as well as non-cardiac toxicity were observed and analyzed.
RESULTSBrain natriuretic peptide (BNP) before chemotherapy and after four cycles of chemotherapy in the control group was (106.78 ± 4.52)×10(-6) µg/ml and (187.19 ± 8.71)×10(-6) µg/ml, respectively, with a significant difference between them (P < 0.05). It in the experimental group was (102.34 ± 8.76)×10(-6) µg/ml and (105.29 ± 7.21)×10(-6) µg/ml, respectively, without a significant difference (P > 0.05). Cardiac troponin T (cTnT) before chemotherapy and after four cycles of chemotherapy in the control group was (12.55 ± 2.73)×10(-3) µg/ml and ( 31.05 ± 7.10 )×10(-3) µg/ml, respectively, with a significant difference between them (P < 0.05). It in the experimental group was (12.70 ± 2.15)×10(-3) µg/ml and (13.65 ± 7.82)×10(-3) µg/ml, respectively, without a significant difference (P > 0.05). The hart rate (HR) before chemotherapy and after four cycles of chemotherapy in the control group, was 75.32 ± 7.14 bpm and 89.60 ± 9.21 bpm, respectively, with a significant difference (P < 0.05). It in the experimental group was 78.60 ± 6.29 bpm and 83.10 ± 7.56 bpm, respectively, without a significant difference (P > 0.05). The left ventricular ejection fraction (LVEF) before chemotherapy and after four cycles of chemotherapy in the control group was (65.23 ± 7.82)% and (55.21 ± 7.23)%, respectively, with a significant difference between them (P < 0.05). It in the experimental group was (64.12 ± 6.25)% and (59.6 ± 4.72)%, respectively, without a significant difference (P > 0.05). The absolute neutrophil count before chemotherapy and after four cycles of chemotherapy in the control group was (3.95 ± 1.36)×10(9)/L and (3.50 ± 1.52)×10(9)/L, respectively, without a significant difference (P > 0.05). It in the experimental group, was (4.96 ± 1.41)×10(9)/L and (3.10 ± 1.26)×10(9)/L, respectively, with a significant difference (P < 0.05). The incidence of grade I-IV bone marrow suppression in the experimental group was 21.3%, 16.4%, 24.6%, and 4.9%, respectively. It in the control group was 16.4%, 11.5%, 9.8%, and 5.5%, respectively, with a significant difference (P < 0.05).
CONCLUSIONSCardiac toxicity after anthracycline treatment in breast cancer patients may be significantly reduced by DEX, without increase of non-cardiac and and non-hematologic toxicity. DEX combined with anthracycline increases the risk of bone marrow suppression, therefore, peripheral blood picture should be monitored or routine bone marrow support may be needed.
Adolescent ; Adult ; Aged ; Antibiotics, Antineoplastic ; adverse effects ; therapeutic use ; Bone Marrow ; drug effects ; Breast Neoplasms ; drug therapy ; metabolism ; pathology ; physiopathology ; surgery ; Cardiovascular Agents ; adverse effects ; therapeutic use ; Chemotherapy, Adjuvant ; Epirubicin ; adverse effects ; therapeutic use ; Female ; Follow-Up Studies ; Heart Rate ; drug effects ; Humans ; Leukocyte Count ; Middle Aged ; Natriuretic Peptide, Brain ; metabolism ; Neutrophils ; cytology ; Razoxane ; adverse effects ; therapeutic use ; Stroke Volume ; drug effects ; Young Adult