1.Sialyltransferase ST3GAL1 promotes malignant progression in glioma.
Zihao ZHAO ; Wenjing ZHENG ; Lingling ZHANG ; Wenjie SONG ; Tao WANG
Chinese Journal of Cellular and Molecular Immunology 2025;41(4):308-317
Objective To investigate the clinical relevance and diagnostic or prognostic value of ST3β-galactoside α-2, 3-sialyltransferase 1 (ST3GAL1) in glioma and to confirm its role in promoting malignant phenotypes. Methods Using data from The Cancer Genome Atlas (TCGA) database, we analyzed the correlation between ST3GAL1 expression levels in glioma and clinical parameters to evaluate its diagnostic and prognostic value. The impact of ST3GAL1 on malignant phenotypes of glioma cells-including proliferation, cell cycle progression, apoptosis, and invasion was further validated through ST3GAL1 knockdown experiments. Results The expression level of ST3GAL1 was significantly higher in glioma tissues compared to healthy brain tissues and showed a strong correlation with clinical characteristics of glioma patients. Survival analysis and receiver operating characteristic (ROC) curve demonstrated that ST3GAL1 could serve as a potential diagnostic and prognostic biomarker for glioma. Knockdown of ST3GAL1 suppressed proliferation, invasion, and migration capabilities of glioma cell lines, and induced G1-phase cell cycle arrest. Conclusion ST3GAL1 promotes malignant phenotypes in glioma and plays a critical role in its malignant progression, suggesting its potential as a biomarker for glioma diagnosis and prognosis.
Humans
;
Sialyltransferases/metabolism*
;
Glioma/diagnosis*
;
Cell Proliferation/genetics*
;
Cell Line, Tumor
;
Brain Neoplasms/enzymology*
;
beta-Galactoside alpha-2,3-Sialyltransferase
;
Disease Progression
;
Prognosis
;
Cell Movement/genetics*
;
Apoptosis/genetics*
;
Male
;
Female
;
Gene Expression Regulation, Neoplastic
;
Biomarkers, Tumor/metabolism*
;
Middle Aged
2.Molecular targeted therapy for progressive low-grade gliomas in children.
Yan-Ling SUN ; Miao LI ; Jing-Jing LIU ; Wen-Chao GAO ; Yue-Fang WU ; Lu-Lu WAN ; Si-Qi REN ; Shu-Xu DU ; Wan-Shui WU ; Li-Ming SUN
Chinese Journal of Contemporary Pediatrics 2025;27(6):682-689
OBJECTIVES:
To evaluate the efficacy of molecular targeted agents in children with progressive pediatric low-grade gliomas (pLGG).
METHODS:
A retrospective analysis was conducted on pLGG patients treated with oral targeted therapies at the Department of Pediatrics, Beijing Shijitan Hospital, Capital Medical University, from July 2021. Treatment responses and safety profiles were assessed.
RESULTS:
Among the 20 enrolled patients, the trametinib group (n=12, including 11 cases with BRAF fusions and 1 case with BRAF V600E mutation) demonstrated 4 partial responses (33%) and 2 minor responses (17%), with a median time to response of 3.0 months. In the vemurafenib group (n=6, all with BRAF V600E mutation), 5 patients achieved partial responses (83%), showing a median time to response of 1.0 month. Comparative analysis revealed no statistically significant difference in progression-free survival rates between the two treatment groups (P>0.05). The median duration of clinical benefit (defined as partial response + minor response + stable disease) was 11.0 months for vemurafenib and 18.0 months for trametinib. Two additional cases, one with ATM mutation treated with olaparib for 24 months and one with NF1 mutation receiving everolimus for 21 months, discontinued treatment due to sustained disease stability. No severe adverse events were observed in any treatment group.
CONCLUSIONS
Molecular targeted therapy demonstrates clinical efficacy with favorable tolerability in pLGG. Vemurafenib achieves high response rates and induces early tumor shrinkage in patients with BRAF V600E mutations, supporting its utility as a first-line therapy.
Humans
;
Glioma/genetics*
;
Male
;
Female
;
Child
;
Child, Preschool
;
Retrospective Studies
;
Brain Neoplasms/genetics*
;
Molecular Targeted Therapy/adverse effects*
;
Adolescent
;
Infant
;
Proto-Oncogene Proteins B-raf/genetics*
;
Pyrimidinones/therapeutic use*
;
Mutation
3.Clinical Practice Guidelines for the Management of Brain Metastases from Non-small Cell Lung Cancer with Actionable Gene Alterations in China (2025 Edition).
Chinese Journal of Lung Cancer 2025;28(1):1-21
Brain metastasis has emerged as a significant challenge in the comprehensive management of patients with non-small cell lung cancer (NSCLC), particularly in those harboring driver gene mutations. Traditional treatments such as radiotherapy and surgery offer limited clinical benefits and are often accompanied by cognitive dysfunction and a decline in quality of life. In recent years, novel small molecule tyrosine kinase inhibitors targeting epidermal growth factor receptor (EGFR), anaplastic lymphoma kinase (ALK), and other pathways have been developed, effectively penetrating the blood-brain barrier while enhancing intracranial drug concentrations and improving patient outcomes. This advancement has transformed the treatment landscape for brain metastases in NSCLC. Consequently, the Lung Cancer Medical Education Committee of the Chinese Medical Education Association and the Brain Metastasis Collaboration Group of the Lung Cancer Youth Expert Committee of the Beijing Medical Reward Foundation have jointly initiated and formulated the Clinical Practice Guidelines for the Management of Brain Metastases from Non-small Cell Lung Cancer with Actionable Gene Alterations in China (2025 Edition). This guideline integrates the latest research findings with clinical experience, adhering to multidisciplinary treatment principles, and encompasses aspects such as diagnosis, timing of intervention, and systemic and local treatment options for driver gene positive NSCLC brain metastases. Additionally, it proposes individualized treatment strategies tailored to different driver gene types, aiming to provide clinicians with a reference to enhance the overall diagnostic and therapeutic standards for NSCLC brain metastases in China.
.
Humans
;
Brain Neoplasms/drug therapy*
;
Carcinoma, Non-Small-Cell Lung/pathology*
;
China
;
Lung Neoplasms/genetics*
4.Circ_EPHB4 regulates temozolomide sensitivity in glioma cells through the miR-424-5p/Wnt3 axis.
Yuxiang LIAO ; Jingping LIU ; Bo LIU ; Xiyun FEI ; Chen JIN
Journal of Southern Medical University 2025;45(5):942-953
OBJECTIVES:
To investigate the mechanism by which circ_EPHB4 regulates temozolomide (TMZ) sensitivity of glioma cells through the miR-424-5p/Wnt3 signal axis.
METHODS:
We detected the expression levels of circ_EPHB4, miR-424-5p and Wnt3 mRNA in glioma specimens from 25 patients with primary glioma and 25 patients experiencing relapse following temozolomide-based chemotherapy and in TMZ-sensitive and -resistant glioma A172 and SHG44 cells with circ_EPHB4 knockdown using qRT-PCR, and Wnt3 protein expression level was detected with Western blotting. Cell viability, colony-forming ability, and apoptosis of the cells with circ_EPHB4 knockdown were assessed, and the targeted regulation relationship between circ_EPHB4, miR-424-5p, and Wnt3 was verified by dual luciferase reporter assay and RNA immunoprecipitation (RIP) experiments. The effect of circ_EPHB4 knockdown on tumorigenesis of glioma cells was evaluated in subcutaneous tumor-bearing nude mouse models.
RESULTS:
The expression of circ_EPHB4 was significantly increased in glioma tissues and cells as compared with normal neural tissues and astrocytes (P=0.014). In TMZ-resistant glioma cells, circ_EPHB4 knockdown resulted in an obvious reduction of IC50 value of TMZ, inhibited cell colony formation, and promoted cell apoptosis, and these effects were reversed by miR-424-5p knockdown. The expressions of miR-424-5p and circ_EPHB4 were negatively correlated in glioma tissues (P=0.011). MiR-424-5p knockdown also attenuated the effect of circ_EPHB4 knockdown on expressions of PCNA, P-gp, MRP1 and bax.
CONCLUSIONS
Circ_EPHB4 regulates Wnt3 expression through "sponge adsorption" of miR-424-5p, thereby modulating TMZ-resistant glioblastoma cell clonogenesis, apoptosis, and TMZ sensitivity, suggesting the potential of circ_EPHB4 as a therapeutic target for reversing drug resistance of gliomas.
MicroRNAs/genetics*
;
Humans
;
Temozolomide
;
Glioma/genetics*
;
Animals
;
Mice, Nude
;
Cell Line, Tumor
;
Wnt3 Protein/metabolism*
;
Mice
;
Apoptosis
;
RNA, Circular
;
Drug Resistance, Neoplasm
;
Brain Neoplasms/pathology*
;
Signal Transduction
5.circ_EPHB4 synergizes with YTHDF3 to promote glioma progression via m6A-dependent stabilization of Wnt3.
Chen JIN ; Jingping LIU ; Bo LIU ; Xiyun FEI ; Yuxiang LIAO
Journal of Southern Medical University 2025;45(11):2320-2329
OBJECTIVES:
To investigate the oncogenic role of circular RNA circ_EPHB4 in glioma and its molecular mechanism.
METHODS:
Microarray analysis was performed to identify the differentially expressed circRNAs in glioma tissues. The effects of circ_EPHB4 on glioma cell migration, invasion and epithelial-mesenchymal transition (EMT) in vitro and tumorigenicity in vivo were assessed using scratch wound healing assay, Transwell invasion assay and nude mouse models bearing subcutaneous tumors. RNA immunoprecipitation (RIP), RNA stability assays, and gene overexpression and silencing techniques were employed to validate the synergistic regulatory effect of circ_EPHB4 and the N6-methyladenosine (m6A) reader protein YTHDF3 on Wnt3 expression.
RESULTS:
Circ_EPHB4 was significantly overexpressed by 2.3 folds (|log2FC|=1.2, P<0.01) in glioma tissues compared to the adjacent tissues, and by 2.5 folds in glioma cell line U373 compared to normal cells (P<0.001). Overexpression of circ_EPHB4 significantly enhanced migration and invasion of glioma cells, and promoted the expressions of EMT markers N-cadherin and vimentin. In the tumor-bearing mouse models, the tumor volume in circ_EPHB4 overexpression group was significantly greater than that in the control group, and the lung metastatic foci increased by 4.2 folds. Overexpression of circ_EPHB4 promoted oncogenesis by upregulating Wnt3 expression, while YTHDF3 extended the half-life of Wnt3 mRNA in an m6A-dependent manner. Simultaneous knockdown of circ_EPHB4 and YTHDF3 resulted in an obvious reduction of Wnt3 mRNA expression by up to 47% compared to its level following knocking down either circ_EPHB4 or YTHDF3 alone.
CONCLUSIONS
Circ_EPHB4 and YTHDF3 promote glioma progression by jointly targeting the Wnt3 signaling pathway, which may provide a new therapeutic strategy for gliomas.
Glioma/genetics*
;
Humans
;
Animals
;
Cell Line, Tumor
;
RNA-Binding Proteins/genetics*
;
RNA, Circular
;
Epithelial-Mesenchymal Transition
;
Mice, Nude
;
Cell Movement
;
Wnt3 Protein/genetics*
;
Mice
;
Disease Progression
;
Adenosine/metabolism*
;
Brain Neoplasms/metabolism*
;
Gene Expression Regulation, Neoplastic
6.Dysregulation of Iron Homeostasis Mediated by FTH Increases Ferroptosis Sensitivity in TP53-Mutant Glioblastoma.
Xuejie HUAN ; Jiangang LI ; Zhaobin CHU ; Hongliang ZHANG ; Lei CHENG ; Peng LUN ; Xixun DU ; Xi CHEN ; Qian JIAO ; Hong JIANG
Neuroscience Bulletin 2025;41(4):569-582
Iron metabolism is a critical factor in tumorigenesis and development. Although TP53 mutations are prevalent in glioblastoma (GBM), the mechanisms by which TP53 regulates iron metabolism remain elusive. We reveal an imbalance iron homeostasis in GBM via TCGA database analysis. TP53 mutations disrupted iron homeostasis in GBM, characterized by elevated total iron levels and reduced ferritin (FTH). The gain-of-function effect triggered by TP53 mutations upregulates itchy E3 ubiquitin-protein ligase (ITCH) protein expression in astrocytes, leading to FTH degradation and an increase in free iron levels. TP53-mut astrocytes were more tolerant to the high iron environment induced by exogenous ferric ammonium citrate (FAC), but the increase in intracellular free iron made them more sensitive to Erastin-induced ferroptosis. Interestingly, we found that Erastin combined with FAC treatment significantly increased ferroptosis. These findings provide new insights for drug development and therapeutic modalities for GBM patients with TP53 mutations from iron metabolism perspectives.
Ferroptosis/drug effects*
;
Humans
;
Iron/metabolism*
;
Glioblastoma/metabolism*
;
Tumor Suppressor Protein p53/metabolism*
;
Homeostasis/physiology*
;
Ferritins/metabolism*
;
Brain Neoplasms/genetics*
;
Mutation
;
Astrocytes/drug effects*
;
Cell Line, Tumor
;
Piperazines/pharmacology*
;
Quaternary Ammonium Compounds/pharmacology*
;
Ferric Compounds
7.Progress on the functions and mechanisms of natural products in anti-glioma therapy.
Yanting LI ; Shuhui QU ; Jiayi ZUO ; Haoping LONG ; Feng CAO ; Feng JIANG
Chinese Journal of Natural Medicines (English Ed.) 2025;23(5):541-559
Glioma, the most prevalent primary tumor of the central nervous system (CNS), is also the most lethal primary malignant tumor. Currently, there are limited chemotherapeutics available for glioma treatment, necessitating further research to identify and develop new chemotherapeutic agents. A significant approach to discovering anti-glioma drugs involves isolating antitumor active ingredients from natural products (NPs) and optimizing their structures. Additionally, targeted drug delivery systems (TDDSs) are employed to enhance drug solubility and stability and overcome the blood-brain barrier (BBB). TDDSs can penetrate deep into the brain, increase drug concentration and retention time in the CNS, and improve the targeting efficiency of NPs, thereby reducing adverse effects and enhancing anti-glioma efficacy. This paper reviews the research progress of anti-glioma activities of NPs, including alkaloids, polyphenols, flavonoids, terpenoids, saponins, quinones, and their synthetic derivatives over the past decade. The review also summarizes anti-glioma mechanisms, such as suppression of related protein expression, regulation of reactive oxygen species (ROS) levels, control of apoptosis signaling pathways, reduction of matrix metalloproteinases (MMPs) expression, blocking of vascular endothelial growth factor (VEGF), and reversal of immunosuppression. Furthermore, the functions and advantages of NP-based TDDSs in anti-glioma therapy are examined. The key information presented in this review will be valuable for the research and development of NP-based anti-glioma drugs and related TDDSs.
Humans
;
Glioma/metabolism*
;
Biological Products/therapeutic use*
;
Animals
;
Brain Neoplasms/genetics*
;
Drug Delivery Systems
;
Antineoplastic Agents/therapeutic use*
;
Blood-Brain Barrier/metabolism*
;
Apoptosis/drug effects*
8.Front-line therapy for brain metastases and non-brain metastases in advanced epidermal growth factor receptor-mutated non-small cell lung cancer: a network meta-analysis.
Yixiang ZHU ; Chengcheng LIU ; Ziyi XU ; Zihua ZOU ; Tongji XIE ; Puyuan XING ; Le WANG ; Junling LI
Chinese Medical Journal 2023;136(21):2551-2561
BACKGROUND:
The brain is a common metastatic site in patients with non-small cell lung cancer (NSCLC), resulting in a relatively poor prognosis. Systemic therapy with epidermal growth factor receptor (EGFR)-tyrosine kinase inhibitors (TKIs) is recommended as the first-line treatment for EGFR -mutated, advanced NSCLC patients. However, intracranial activity varies in different drugs. Thus, brain metastasis (BM) should be considered when choosing the treatment regimens. We conducted this network meta-analysis to explore the optimal first-line therapeutic schedule for advanced EGFR -mutated NSCLC patients with different BM statuses.
METHODS:
Randomized controlled trials focusing on EGFR-TKIs (alone or in combination) in advanced and EGFR -mutant NSCLC patients, who have not received systematic treatment, were systematically searched up to December 2021. We extracted and analyzed progression-free survival (PFS) and overall survival (OS). A network meta-analysis was performed with the Bayesian statistical model to determine the survival outcomes of all included therapy regimens using the R software. Hazard ratios (HRs) and 95% confidence intervals (CIs) were used to compare intervention measures, and overall rankings of therapies were estimated under the Bayesian framework.
RESULTS:
This analysis included 17 RCTs with 5077 patients and 12 therapies, including osimertinib + bevacizumab, aumolertinib, osimertinib, afatinib, dacomitinib, standards of care (SoC, including gefitinib, erlotinib, or icotinib), SoC + apatinib, SoC + bevacizumab, SoC + ramucirumab, SoC + pemetrexed based chemotherapy (PbCT), PbCT, and pemetrexed free chemotherapy (PfCT). For patients with BM, SoC + PbCT improved PFS compared with SoC (HR = 0.40, 95% CI: 0.17-0.95), and osimertinib + bevacizumab was most likely to rank first in PFS, with a cumulative probability of 34.5%, followed by aumolertinib, with a cumulative probability of 28.3%. For patients without BM, osimertinib + bevacizumab, osimertinib, aumolertinib, SoC + PbCT, dacomitinib, SoC + ramucirumab, SoC + bevacizumab, and afatinib showed superior efficacy compared with SoC (HR = 0.43, 95% CI: 0.20-0.90; HR = 0.46, 95% CI: 0.31-0.68; HR = 0.51, 95% CI: 0.34-0.77; HR = 0.50, 95% CI: 0.38-0.66; HR = 0.62, 95% CI: 0.43-0.89; HR = 0.64, 95% CI: 0.44-0.94; HR = 0.61, 95% CI: 0.48-0.76; HR = 0.71, 95% CI: 0.50-1.00), PbCT (HR = 0.29, 95% CI: 0.11-0.74; HR = 0.31, 95% CI: 0.15-0.62; HR = 0.34, 95% CI: 0.17-0.69; HR = 0.34, 95% CI: 0.18-0.64; HR = 0.42, 95% CI: 0.21-0.82; HR = 0.43, 95% CI: 0.22-0.87; HR = 0.41, 95% CI: 0.22-0.74; HR = 0.48, 95% CI: 0.31-0.75), and PfCT (HR = 0.14, 95% CI: 0.06-0.32; HR = 0.15, 95% CI: 0.09-0.26; HR = 0.17, 95% CI: 0.09-0.29; HR = 0.16, 95% CI: 0.10-0.26; HR = 0.20, 95% CI: 0.12-0.35; HR = 0.21, 95% CI: 0.12-0.39; HR = 0.20, 95% CI: 0.12-0.31; HR = 0.23, 95% CI: 0.16-0.34) in terms of PFS. And, SoC + apatinib showed relatively superior PFS when compared with PbCT (HR = 0.44, 95% CI: 0.22-0.92) and PfCT (HR = 0.21, 95% CI: 0.12-0.39), but similar PFS to SoC (HR = 0.65, 95% CI: 0.42-1.03). No statistical differences were observed for PFS in patients without BM between PbCT and SoC (HR = 1.49, 95% CI: 0.84-2.64), but both showed favorable PFS when compared with PfCT (PfCT vs. SoC, HR = 3.09, 95% CI: 2.06-4.55; PbCT vs. PfCT, HR = 0.14, 95% CI: 0.06-0.32). For patients without BM, osimertinib + bevacizumab was most likely to rank the first, with cumulative probabilities of 47.1%. For OS, SoC + PbCT was most likely to rank first in patients with and without BM, with cumulative probabilities of 46.8%, and 37.3%, respectively.
CONCLUSION
Osimertinib + bevacizumab is most likely to rank first in PFS in advanced EGFR -mutated NSCLC patients with or without BM, and SoC + PbCT is most likely to rank first in OS.
Humans
;
Carcinoma, Non-Small-Cell Lung/metabolism*
;
Afatinib/therapeutic use*
;
Lung Neoplasms/metabolism*
;
Bevacizumab/therapeutic use*
;
Bayes Theorem
;
Network Meta-Analysis
;
Protein Kinase Inhibitors/therapeutic use*
;
Pemetrexed/therapeutic use*
;
ErbB Receptors/genetics*
;
Brain Neoplasms/genetics*
;
Mutation/genetics*
9.FOXO1-miR-506 axis promotes chemosensitivity to temozolomide and suppresses invasiveness in glioblastoma through a feedback loop of FOXO1/miR-506/ETS1/FOXO1.
Chao CHEN ; Yu'e LIU ; Hongxiang WANG ; Xu ZHANG ; Yufeng SHI ; Juxiang CHEN
Journal of Zhejiang University. Science. B 2023;24(8):698-710
To explore the role of forkhead box protein O1 (FOXO1) in the progression of glioblastoma multiforme (GBM) and related drug resistance, we deciphered the roles of FOXO1 and miR-506 in proliferation, apoptosis, migration, invasion, autophagy, and temozolomide (TMZ) sensitivity in the U251 cell line using in vitro and in vivo experiments. Cell viability was tested by a cell counting kit-8 (CCK8) kit; migration and invasion were checked by the scratching assay; apoptosis was evaluated by terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) staining and flow cytometry. The construction of plasmids and dual-luciferase reporter experiment were carried out to find the interaction site between FOXO1 and miR-506. Immunohistochemistry was done to check the protein level in tumors after the in vivo experiment. We found that the FOXO1-miR-506 axis suppresses GBM cell invasion and migration and promotes GBM chemosensitivity to TMZ, which was mediated by autophagy. FOXO1 upregulates miR-506 by binding to its promoter to enhance transcriptional activation. MiR-506 could downregulate E26 transformation-specific 1 (ETS1) expression by targeting its 3'-untranslated region (UTR). Interestingly, ETS1 promoted FOXO1 translocation from the nucleus to the cytosol and further suppressed the FOXO1-miR-506 axis in GBM cells. Consistently, both miR-506 inhibition and ETS1 overexpression could rescue FOXO1 overactivation-mediated TMZ chemosensitivity in mouse models. Our study demonstrated a negative feedback loop of FOXO1/miR-506/ETS1/FOXO1 in GBM in regulating invasiveness and chemosensitivity. Thus, the above axis might be a promising therapeutic target for GBM.
Animals
;
Mice
;
Brain Neoplasms/genetics*
;
Cell Line, Tumor
;
Cell Proliferation
;
Drug Resistance, Neoplasm
;
Feedback
;
Gene Expression Regulation, Neoplastic
;
Glioblastoma/metabolism*
;
MicroRNAs/metabolism*
;
Temozolomide/therapeutic use*
;
Humans
;
Forkhead Box Protein O1/metabolism*
10.Diffuse midline glioma with H3K27 alteration in adults: a clinicopathological analysis.
Qin Yi YANG ; Ming Na LI ; Tian Yu CHEN ; Chong LIU ; Xiao LI ; Zhu Mei SHI ; Min Hong PAN
Chinese Journal of Pathology 2023;52(4):376-383
Objective: To investigate the clinicopathological characteristics, pathological diagnosis and prognosis of diffuse midline glioma (DMG) with H3K27 alteration in adults. Methods: Twenty cases of H3K27-altered adult DMG diagnosed in the First Affiliated Hospital of Nanjing Medical University were enrolled from 2017 to 2022. All cases were evaluated by clinical and imaging presentations, HE, immunohistochemical staining and molecular genetics; and the relevant literature was reviewed. Results: The ratio of male to female was 1∶1, and the median age was 53 years (range from 25 to 74 years); the tumors were located in the brainstem (3/20, 15%) and non-brainstem (17/20, 85%; three in thoracolumbar spinal cord and one in pineal region). The clinical manifestations were non-specific, mostly dizziness, headache, blurred vision, memory loss, low back pain, limb sensation and/or movement disorders, etc. Microscopically, the tumors showed infiltrative growth, with WHO grade 2 (3 cases), grade 3 (12 cases), and grade 4 (5 cases). The tumors showed astrocytoma-like and oligdendroglioma-like, pilocytic astrocytoma-like and epithelioid-like patterns. Immunohistochemically, the tumor cells were positive for GFAP, Olig2 and H3K27M, and H3K27me3 expression was variably lost. ATRX expression was lost in four cases, p53 was strongly positive in 11 cases. Ki-67 index was about 5%-70%. Molecular genetics showed p. k27m mutation in exon 1 of H3F3A gene in 20 cases; BRAF mutation in two cases: V600E and L597Q mutation in one case each. Follow up intervals ranged from 1 to 58 months, and the survival time for brainstem (6.0 months) and non-brainstem (30.4 months) tumors was significantly different (P<0.05). Conclusions: DMG with H3K27 alteration is uncommonly found in adults, mostly occurs in non-brainstem, and can present in adults of all ages. Owing to the wide histomorphologic features, mainly astrocytic differentiation, routine detection of H3K27me3 in midline glioma is recommended. Molecular testing should be performed on any suspected cases to avoid missed diagnosis. Concomitant BRAF L597Q mutation and PPM1D mutation are novel findings. The overall prognosis of this tumor is poor, with tumors located in the brainstem showing worse outcome.
Humans
;
Adult
;
Male
;
Female
;
Middle Aged
;
Aged
;
Histones/genetics*
;
Brain Neoplasms/pathology*
;
Proto-Oncogene Proteins B-raf/metabolism*
;
Glioma/pathology*
;
Astrocytoma/pathology*
;
Mutation

Result Analysis
Print
Save
E-mail