1.Acupuncture research in the era of big data.
Zhengcui FAN ; Jinglan YAN ; Yijun HU ; Xu WANG ; Yongjun CHEN
Chinese Acupuncture & Moxibustion 2025;45(3):265-273
In the era of big data, neuroimaging and algorithmic analyses have propelled brain science research and brain mapping. Acupuncture, widely recognized as an effective surface stimulation therapy, has demonstrated therapeutic efficacy for various brain conditions such as stroke and depression. However, the mechanisms linking acupuncture to brain function and its modulatory effects on brain activity require systematic exploration. Additionally, there is an urgent need to scientifically reinterpret traditional meridian theory and enhance its clinical applicability. Therefore, we propose the initiative of constructing a "brain mapping atlas of meridian, collateral and body surface stimulation" to explore the patterns linking the therapeutic effects of stimulating the twelve meridians, eight extraordinary vessels, divergent channels, collateral channels, sinew channels, and skin regions to brain function. This initiative aims to provide a scientific interpretation of traditional Chinese medicine meridian theory and enhance its practical applicability. This paper begins by reviewing the current state of brain mapping. It then summarizes existing research on the relationship between acupuncture and the brain, highlighting the necessity of constructing this atlas. The paper further analyzes the methodologies and technical challenges involved. Finally, the potential applications of the brain mapping atlas of meridian, collateral and body surface stimulation, and its main significance in advancing traditional meridian theory to keep pace with the times are prospected.
Humans
;
Acupuncture Therapy
;
Meridians
;
Big Data
;
Brain/physiology*
;
Brain Mapping
2.Brain function and connection in patients with refractory overactive bladder and healthy population: Analysis based on resting-state functional MRI.
Yu-Wei ZHANG ; Si-Yi FU ; Yu-Min LIU ; Hui-Hui SONG ; Peng JIANG ; Jia XU ; Bin HU
National Journal of Andrology 2025;31(1):39-44
OBJECTIVE:
To investigate the characteristics of central nervous system regulation in patients with refractory overactive bladder (rOAB) using resting-state functional magnetic resonance imaging (rs-fMRI), and to analyze the differences in brain function and connection between the patients and healthy population.
METHODS:
From May 1 to November 30, 2024, we performed rs-fMRI for 47 rOAB patients and another 47 matched healthy controls, documented relevant clinical data from all the participants and obtained their Overactive Bladder Symptom Scores (OABSS) and Overactive Bladder Questionnaire (OAB-Q) scores. Based on rs-fMRI, we compared the results of Independent Component Analysis (ICA), amplitude of low-frequency fluctuations (ALFF), fractional amplitude of low-frequency fluctuations (fALFF), regional homogeneity (ReHo) and degree centrality (DC) between the rOAB patients and healthy controls.
RESULTS:
The rOAB patients, in comparison with the healthy controls, showed dramatically higher daytime urination frequency (11.64 ± 3.85) vs (5.76 ± 0.91), nighttime urination frequency (3.72 ± 1.64) vs (0.31 ± 0.47), OABSS (8.22 ± 2.21) vs (0.64±0.78), OAB-Q1 score (20.85 ± 5.28) vs (6.78 ± 1.04), and OAB-Q2 score (45.04 ± 12.11) vs (14.51 ± 1.66) (all P<0.01). No statistically significant differences were observed in the results of ICA and ALFF between the right superior frontal and right middle frontal regions in the rOAB patients (P>0.05), but fALFF, ReHo and DC were significantly decreased in the patients compared with those in the healthy controls (P<0.01).
CONCLUSION
Compared with healthy population, the functions and connection of the frontal superior right and frontal middle right brain regions in rOAB patients are significantly down-regulated, which may serve as new therapeutic targets.
Humans
;
Urinary Bladder, Overactive/physiopathology*
;
Magnetic Resonance Imaging
;
Brain/physiopathology*
;
Female
;
Male
;
Adult
;
Surveys and Questionnaires
;
Case-Control Studies
;
Middle Aged
;
Rest
;
Brain Mapping
3.Cortical Morphological Networks Differ Between Gyri and Sulci.
Qingchun LIN ; Suhui JIN ; Guole YIN ; Junle LI ; Umer ASGHER ; Shijun QIU ; Jinhui WANG
Neuroscience Bulletin 2025;41(1):46-60
This study explored how the human cortical folding pattern composed of convex gyri and concave sulci affected single-subject morphological brain networks, which are becoming an important method for studying the human brain connectome. We found that gyri-gyri networks exhibited higher morphological similarity, lower small-world parameters, and lower long-term test-retest reliability than sulci-sulci networks for cortical thickness- and gyrification index-based networks, while opposite patterns were observed for fractal dimension-based networks. Further behavioral association analysis revealed that gyri-gyri networks and connections between gyral and sulcal regions significantly explained inter-individual variance in Cognition and Motor domains for fractal dimension- and sulcal depth-based networks. Finally, the clinical application showed that only sulci-sulci networks exhibited morphological similarity reductions in major depressive disorder for cortical thickness-, fractal dimension-, and gyrification index-based networks. Taken together, these findings provide novel insights into the constraint of the cortical folding pattern to the network organization of the human brain.
Humans
;
Cerebral Cortex/anatomy & histology*
;
Male
;
Female
;
Magnetic Resonance Imaging
;
Adult
;
Connectome/methods*
;
Young Adult
;
Nerve Net/anatomy & histology*
;
Neural Pathways
;
Depressive Disorder, Major/diagnostic imaging*
4.Neural Basis of Categorical Representations of Animal Body Silhouettes.
Neuroscience Bulletin 2025;41(2):211-223
Neural activities differentiating bodies versus non-body stimuli have been identified in the occipitotemporal cortex of both humans and nonhuman primates. However, the neural mechanisms of coding the similarity of different individuals' bodies of the same species to support their categorical representations remain unclear. Using electroencephalography (EEG) and magnetoencephalography (MEG), we investigated the temporal and spatial characteristics of neural processes shared by different individual body silhouettes of the same species by quantifying the repetition suppression of neural responses to human and animal (chimpanzee, dog, and bird) body silhouettes showing different postures. Our EEG results revealed significant repetition suppression of the amplitudes of early frontal/central activity at 180-220 ms (P2) and late occipitoparietal activity at 220-320 ms (P270) in response to animal (but not human) body silhouettes of the same species. Our MEG results further localized the repetition suppression effect related to animal body silhouettes in the left supramarginal gyrus and left frontal cortex at 200-440 ms after stimulus onset. Our findings suggest two neural processes that are involved in spontaneous categorical representations of animal body silhouettes as a cognitive basis of human-animal interactions.
Humans
;
Animals
;
Male
;
Electroencephalography
;
Magnetoencephalography
;
Female
;
Young Adult
;
Adult
;
Pattern Recognition, Visual/physiology*
;
Brain Mapping
;
Photic Stimulation
;
Brain/physiology*
;
Dogs
5.Functional Connectivity Encodes Sound Locations by Lateralization Angles.
Renjie TONG ; Shaoyi SU ; Ying LIANG ; Chunlin LI ; Liwei SUN ; Xu ZHANG
Neuroscience Bulletin 2025;41(2):261-271
The ability to localize sound sources rapidly allows human beings to efficiently understand the surrounding environment. Previous studies have suggested that there is an auditory "where" pathway in the cortex for processing sound locations. The neural activation in regions along this pathway encodes sound locations by opponent hemifield coding, in which each unilateral region is activated by sounds coming from the contralateral hemifield. However, it is still unclear how these regions interact with each other to form a unified representation of the auditory space. In the present study, we investigated whether functional connectivity in the auditory "where" pathway encoded sound locations during passive listening. Participants underwent functional magnetic resonance imaging while passively listening to sounds from five distinct horizontal locations (-90°, -45°, 0°, 45°, 90°). We were able to decode sound locations from the functional connectivity patterns of the "where" pathway. Furthermore, we found that such neural representation of sound locations was primarily based on the coding of sound lateralization angles to the frontal midline. In addition, whole-brain analysis indicated that functional connectivity between occipital regions and the primary auditory cortex also encoded sound locations by lateralization angles. Overall, our results reveal a lateralization-angle-based representation of sound locations encoded by functional connectivity patterns, which could add on the activation-based opponent hemifield coding to provide a more precise representation of the auditory space.
Humans
;
Sound Localization/physiology*
;
Male
;
Female
;
Magnetic Resonance Imaging
;
Young Adult
;
Functional Laterality/physiology*
;
Adult
;
Brain Mapping
;
Auditory Cortex/physiology*
;
Acoustic Stimulation
;
Auditory Pathways/physiology*
;
Brain/physiology*
6.Comprehensive Brain-wide Mapping of Afferent and Efferent Nuclei Associated with the Heart in the Mouse.
Haiying LIU ; Xin HUANG ; Ruixin XIA ; Xin ZHAO ; Zimeng LI ; Qian LIU ; Congye LI ; Honghui MAO ; Wenting WANG ; Shengxi WU
Neuroscience Bulletin 2025;41(10):1743-1760
Normal heart function depends on complex regulation by the brain, and abnormalities in the brain‒heart axis affect various diseases, such as myocardial infarction and anxiety disorders. However, systematic tracking of the brain regions associated with the input and output of the heart is lacking. In this study, we injected retrograde transsynaptic pseudorabies virus (PRV) and anterograde transsynaptic herpes simplex virus (HSV) into the left ventricular wall of mice to identify the whole-brain regions associated with the input to and output from the heart. We successfully detected PRV and HSV expression in at least 170 brain subregions in both male and female mice. Sex differences were discovered mainly in the hypothalamus and medulla, with male mice exhibiting greater correlation and hierarchical clustering than female mice, indicating reduced similarity and increased modularity of virus expression patterns in male mice. Further graph theory and multiple linear regression analysis of different injection timelines revealed that hub regions of PRV had highly similar clusters, with different brain levels, suggesting a top-down, hierarchically transmitted neural control pattern of the heart. Hub regions of HSV had scattered clusters, with brain regions gathered in the cortex and brainstem, suggesting a bottom-up, leapfrog, multipoint neural sensing pattern of the heart. Both patterns contain many hub brain regions that have been previously overlooked in brain‒heart axis studies. These results provide brain targets for future research and will lead to deeper insight into the brain mechanisms involved in specific heart conditions.
Animals
;
Male
;
Female
;
Heart/physiology*
;
Mice
;
Herpesvirus 1, Suid
;
Brain/physiology*
;
Mice, Inbred C57BL
;
Brain Mapping
;
Efferent Pathways/physiology*
;
Afferent Pathways/physiology*
;
Simplexvirus
;
Sex Characteristics
7.Mapping Brain-Wide Neural Activity of Murine Attentional Processing in the Five-Choice Serial Reaction Time Task.
Yin YUE ; Youming TAN ; Pin YANG ; Shu ZHANG ; Hongzhen PAN ; Yiran LANG ; Zengqiang YUAN
Neuroscience Bulletin 2025;41(5):741-758
Attention is the cornerstone of effective functioning in a complex and information-rich world. While the neural activity of attention has been extensively studied in the cortex, the brain-wide neural activity patterns are largely unknown. In this study, we conducted a comprehensive analysis of neural activity across the mouse brain during attentional processing using EEG and c-Fos staining, utilizing hierarchical clustering and c-Fos-based functional network analysis to evaluate the c-Fos activation patterns. Our findings reveal that a wide range of brain regions are activated, notably in the high-order cortex, thalamus, and brain stem regions involved in advanced cognition and arousal regulation, with the central lateral nucleus of the thalamus as a strong hub, suggesting the crucial role of the thalamus in attention control. These results provide valuable insights into the neural network mechanisms underlying attention, offering a foundation for formulating functional hypotheses and conducting circuit-level testing.
Animals
;
Attention/physiology*
;
Mice
;
Brain/physiology*
;
Male
;
Electroencephalography
;
Reaction Time/physiology*
;
Brain Mapping
;
Mice, Inbred C57BL
;
Choice Behavior/physiology*
;
Proto-Oncogene Proteins c-fos/metabolism*
8.Evolution of the Rich Club Properties in Mouse, Macaque, and Human Brain Networks: A Study of Functional Integration, Segregation, and Balance.
Xiaoru ZHANG ; Ming SONG ; Wentao JIANG ; Yuheng LU ; Congying CHU ; Wen LI ; Haiyan WANG ; Weiyang SHI ; Yueheng LAN ; Tianzi JIANG
Neuroscience Bulletin 2025;41(9):1630-1644
The rich club, as a community of highly interconnected nodes, serves as the topological center of the network. However, the similarities and differences in how the rich club supports functional integration and segregation in the brain across different species remain unknown. In this study, we first detected and validated the rich club in the structural networks of mouse, monkey, and human brains using neuronal tracing or diffusion magnetic resonance imaging data. Further, we assessed the role of rich clubs in functional integration, segregation, and balance using quantitative metrics. Our results indicate that the presence of a rich club facilitates whole-brain functional integration in all three species, with the functional networks of higher species exhibiting greater integration. These findings are expected to help to understand the relationship between brain structure and function from the perspective of brain evolution.
Animals
;
Humans
;
Brain/diagnostic imaging*
;
Mice
;
Male
;
Nerve Net/diagnostic imaging*
;
Macaca
;
Female
;
Neural Pathways/diagnostic imaging*
;
Magnetic Resonance Imaging
;
Biological Evolution
;
Adult
;
Diffusion Magnetic Resonance Imaging
;
Brain Mapping
;
Species Specificity
;
Mice, Inbred C57BL
9.Neural Tracking of Race-Related Information During Face Perception.
Chenyu PANG ; Na ZHOU ; Yiwen DENG ; Yue PU ; Shihui HAN
Neuroscience Bulletin 2025;41(11):1957-1976
Previous studies have identified two group-level processes, neural representations of interracial between-group difference and intraracial within-group similarity, that contribute to the racial categorization of faces. What remains unclear is how the brain tracks race-related information that varies across different faces as an individual-level neural process involved in race perception. In three studies, we recorded functional MRI signals when Chinese adults performed different tasks on morphed faces in which proportions of pixels contributing to perceived racial identity (Asian vs White) and expression (pain vs neutral) varied independently. We found that, during a pain expression judgment task, tracking other-race and same-race-related information in perceived faces recruited the ventral occipitotemporal cortices and medial prefrontal/anterior temporal cortices, respectively. However, neural tracking of race-related information tended to be weakened during explicit race judgments on perceived faces. During a donation task, the medial prefrontal activity also tracked race-related information that distinguished between two perceived faces for altruistic decision-making and encoded the Euclidean distance between the two faces that predicted decision-making speeds. Our findings revealed task-dependent neural mechanisms underlying the tracking of race-related information during face perception and altruistic decision-making.
Adult
;
Female
;
Humans
;
Male
;
Young Adult
;
Brain/diagnostic imaging*
;
Brain Mapping
;
Decision Making/physiology*
;
Facial Recognition/physiology*
;
Judgment/physiology*
;
Magnetic Resonance Imaging
;
Photic Stimulation
;
Racial Groups
;
Social Perception
;
East Asian People
10.Intrinsic Functional Connectivity Associated with γ‑Aminobutyric Acid and Glutamate/Glutamine in the Lateral Prefrontal Cortex and Internalizing Psychopathology in Adolescents.
Kai WANG ; Harry R SMOLKER ; Mark S BROWN ; Hannah R SNYDER ; Yu CHENG ; Benjamin L HANKIN ; Marie T BANICH
Neuroscience Bulletin 2025;41(9):1553-1569
In this study, we systematically tested the hypothesis that during the critical developmental period of adolescence, on a macro scale, the concentrations of major excitatory and inhibitory neurotransmitters (glutamate/glutamine and γ‑aminobutyric acid [GABA]) in the dorsal and ventral lateral prefrontal cortex are associated with the brain's functional connectivity and an individual's psychopathology. Neurotransmitters were measured via magnetic resonance spectroscopy while functional connectivity was measured with resting-state fMRI (n = 121). Seed-based and network-based analyses revealed associations of neurotransmitter concentrations and functional connectivities between regions/networks that are connected to prefrontal cortices via structural connections that are thought to be under dynamic development during adolescence. These regions tend to be boundary areas between functional networks. Furthermore, several connectivities were found to be associated with individual's levels of internalizing psychopathology. These findings provide insights into specific neurochemical mechanisms underlying the brain's macroscale functional organization, its development during adolescence, and its potential associations with symptoms associated with internalizing psychopathology.
Humans
;
Adolescent
;
Glutamic Acid/metabolism*
;
Prefrontal Cortex/diagnostic imaging*
;
Male
;
Glutamine/metabolism*
;
Female
;
gamma-Aminobutyric Acid/metabolism*
;
Magnetic Resonance Imaging
;
Magnetic Resonance Spectroscopy
;
Nerve Net/metabolism*
;
Neural Pathways
;
Connectome

Result Analysis
Print
Save
E-mail