1.Neurotoxicity and biomarkers of lead exposure: a review.
Kang-sheng LIU ; Jia-hu HAO ; Yu ZENG ; Fan-chun DAI ; Ping-qing GU
Chinese Medical Sciences Journal 2013;28(3):178-188
Appropriate selection and measurement of lead biomarkers of exposure are critically important for health care management purposes, public health decision making, and primary prevention synthesis. Lead is one of the neurotoxicants that seems to be involved in the etiology of psychologies. Biomarkers are generally classified into three groups: biomarkers of exposure, effect, and susceptibility.The main body compartments that store lead are the blood, soft tissues, and bone; the half-life of lead in these tissues is measured in weeks for blood, months for soft tissues, and years for bone. Within the brain, lead-induced damage in the prefrontal cerebral cortex, hippocampus, and cerebellum can lead to a variety of neurological disorders, such as brain damage, mental retardation, behavioral problems, nerve damage, and possibly Alzheimer's disease, Parkinsons disease, and schizophrenia. This paper presents an overview of biomarkers of lead exposure and discusses the neurotoxic effects of lead with regard to children and adults.
Alzheimer Disease
;
chemically induced
;
metabolism
;
pathology
;
physiopathology
;
psychology
;
Animals
;
Behavior
;
drug effects
;
Biomarkers
;
metabolism
;
Brain
;
metabolism
;
pathology
;
physiopathology
;
Brain Diseases
;
chemically induced
;
pathology
;
physiopathology
;
Environmental Exposure
;
adverse effects
;
Humans
;
Lead
;
pharmacokinetics
;
toxicity
;
Lead Poisoning
;
etiology
;
metabolism
;
pathology
;
physiopathology
;
psychology
;
Neurotoxicity Syndromes
;
etiology
;
metabolism
;
pathology
;
physiopathology
;
psychology
;
Parkinson Disease, Secondary
;
chemically induced
;
metabolism
;
pathology
;
physiopathology
;
psychology
;
Schizophrenia
;
chemically induced
;
metabolism
;
pathology
;
physiopathology
2.Research progress on role of ghrelin in brain.
Jing LU ; Li-gen SHI ; Ai-min BAO
Journal of Zhejiang University. Medical sciences 2012;41(6):689-695
The brain-gut peptide ghrelin, a endogenous ligand for the growth hormone secretagogue hormone receptor, is mainly produced by gastric cells in the periphery, regulating energy metabolism via stimulating the appetite. Inside the brain, ghrelin is mainly expressed in the pituitary and in the hypothalamic arcuate nucleus, regulating the synthesis and secretion of neuropeptides that are correlated with feeding behavior, reproduction, and stress responses. Recently, more and more researches focused on the regulating roles of ghrelin on learning and memory, and mood regulation have indicated that ghrelin may inhibit neuronal apoptosis, improve cognitive function, and regulate the activities of neuroendocrine systems such as the hypothalamo-pituitary-adrenal axis and the hypothalamo-pituitary-gonadal axis thus get involved in the pathogenesis of neuropsychiatric diseases. The aim of this review is to summarize the main findings in this field, with the purpose of promoting further studies on the role of ghrelin in the brain.
Apoptosis
;
Brain
;
metabolism
;
pathology
;
physiology
;
Ghrelin
;
metabolism
;
physiology
;
Humans
;
Learning
;
Memory
;
Neurons
;
pathology
;
Parkinson Disease
;
metabolism
;
pathology
;
physiopathology
3.Depression: damage of neurons and down-regulation of neurogenesis.
Acta Pharmaceutica Sinica 2004;39(11):949-953
Animals
;
Antidepressive Agents
;
pharmacology
;
Brain-Derived Neurotrophic Factor
;
metabolism
;
Cyclic AMP Response Element-Binding Protein
;
metabolism
;
Depression
;
metabolism
;
pathology
;
physiopathology
;
Hippocampus
;
metabolism
;
pathology
;
physiopathology
;
Humans
;
Nerve Degeneration
;
physiopathology
;
Nerve Regeneration
;
drug effects
;
Neurons
;
pathology
;
Stress, Psychological
;
metabolism
;
pathology
;
physiopathology
4.Advances in brain imaging of neuropathic pain.
Fu-yong CHEN ; Wei TAO ; Yong-jie LI
Chinese Medical Journal 2008;121(7):653-657
OBJECTIVETo review the literature on the use of brain imaging, including functional magnetic resonance imaging (fMRI), positron emission tomography (PET), magnetic resonance spectroscopy (MRS) and voxel-based morphometry (VBM) in investigation of the activity in diverse brain regions that creates and modulates chronic neuropathic pain.
DATA SOURCESEnglish literatures from January 1, 2000 to July 31, 2007 that examined human brain activity in chronic neuropathic pain were accessed through MEDLINE/CD ROM, using PET, fMRI, VBM, MRS and receptor binding.
STUDY SELECTIONPublished articles about the application of fMRI, PET, VBM, MRS and chronic neuropathic pain were selected.
DATA EXTRACTIONData were mainly extracted from 40 representative articles as the research basis.
RESULTSThe PET studies suggested that spontaneous neuropathic pain is associated with changes in thalamic activity. Both PET and fMRI have been used to investigate the substrate of allodynia. The VBM demonstrated that brain structural changes are involved in chronic neuropathic pain, which is not seen in a matched control group. However, the results obtained had a large variety, which may be due to different pain etiology, pain distribution, lesion tomography, symptoms and stimulation procedures.
CONCLUSIONSApplication of the techniques of brain imaging plays a very important role in the study of structural and functional reorganization in patients with neuropathic pain. However, a unique "pain matrix" has not been defined. Future studies should be conducted using a prospective longitudinal research design, which would guarantee the control for many confounding factors.
Brain ; pathology ; physiopathology ; Humans ; Magnetic Resonance Imaging ; Magnetic Resonance Spectroscopy ; Pain ; pathology ; physiopathology ; Peripheral Nervous System Diseases ; pathology ; physiopathology ; Positron-Emission Tomography ; Receptors, Dopamine ; metabolism ; Receptors, Opioid ; metabolism
5.Autophagy is activated and might protect neurons from degeneration after traumatic brain injury.
Yan-Bo ZHANG ; Sheng-Xing LI ; Xi-Ping CHEN ; Li YANG ; Yun-Ge ZHANG ; Ran LIU ; Lu-Yang TAO
Neuroscience Bulletin 2008;24(3):143-149
OBJECTIVETo investigate changes of autophagy after traumatic brain injury (TBI) and its possible role.
METHODSRat TBI model was established by controlled cortical injury system. Autophagic double membrane structure was detected by transmission electronic microscope. Microtubule-associated protein 1 light chain 3 (LC3) and Beclin 1 were also used to investigate the activation of autophagy post-TBI. Double labeling with LC3 and caspase-3, or Beclin 1 and Fluoro-Jade to show the relationship between autophagy and apoptosis or neuron degeneration after TBI.
RESULTSAn increase of autophagic double membrane structure was observed in early stage (1 h), and the increase lasted for at least 32 d post-TBI. LC3 and Beclin 1 proteins also began to elevate at 1 h time point post-TBI in neurons, 3 d later in astrocytes, and peaked at about 8 d post-TBI. In both cell types, LC3 and Beclin 1 maintained at a high level until 32 d post-TBI. Most LC3 and Beclin 1 positive cells were near the side (including hippocampus), but not in the core of the injury. In addition, in the periphery of the injury site, not all caspase-3 positive (+) cells merged with LC3 (+) cells post-TBI; In hippocampal area, almost all Beclin 1 (+) neurons did not merge with Fluoro-Jade (+) neurons from 1 h to 48 h post-TBI.
CONCLUSIONAutophagy is activated and might protect neurons from degeneration at early stage post-TBI and play a continuous role afterwards in eliminating aberrant cell components.
Animals ; Apoptosis Regulatory Proteins ; metabolism ; Astrocytes ; metabolism ; pathology ; Autophagy ; Beclin-1 ; Brain ; metabolism ; pathology ; Brain Injuries ; metabolism ; pathology ; physiopathology ; Caspase 3 ; metabolism ; Cell Membrane ; metabolism ; pathology ; Cytoprotection ; Disease Models, Animal ; Fluoresceins ; Fluorescent Antibody Technique ; Hippocampus ; metabolism ; pathology ; physiopathology ; Male ; Microscopy, Electron, Transmission ; Microtubule-Associated Proteins ; metabolism ; Nerve Degeneration ; metabolism ; pathology ; physiopathology ; Neurons ; metabolism ; pathology ; Organic Chemicals ; Rats ; Rats, Sprague-Dawley ; Time Factors ; Up-Regulation
6.The advances in the neuropathology of sudden infant death syndrome.
Bo JIN ; Rui-Run HUANG ; Peng BAI ; Zhi-Gang LIAO
Journal of Forensic Medicine 2006;22(3):230-232
Sudden infant death syndrome is known as sudden death in 12 months postnatal without obvious cause, the cause of death and differential diagnosis of still couldn't be indefinite so far. In this paper, the recent studies on the SIDS neuropathology using immunohisto-chemical technology were reviewed in order to suggest the lethal patho-physiologic derangement or mechanism in SIDS involves dysfunction of sleep-related cardio-respiratory homeostatic controls or failure to arouse. Thus the main cause of SIDS lies in central nerve system, but not unique cause.
Brain/physiopathology*
;
Brain Stem/pathology*
;
Central Nervous System/physiopathology*
;
Cerebral Cortex/pathology*
;
HSP70 Heat-Shock Proteins
;
Humans
;
Hypoxia/physiopathology*
;
Immunohistochemistry
;
Infant
;
Neurons/pathology*
;
Proteins/metabolism*
;
Proto-Oncogene Proteins c-fos/metabolism*
;
Sudden Infant Death/pathology*
7.Cellular microparticles and pathophysiology of traumatic brain injury.
Zilong ZHAO ; Yuan ZHOU ; Ye TIAN ; Min LI ; Jing-Fei DONG ; Jianning ZHANG
Protein & Cell 2017;8(11):801-810
Traumatic brain injury (TBI) is a leading cause of death and disability worldwide. The finding that cellular microparticles (MPs) generated by injured cells profoundly impact on pathological courses of TBI has paved the way for new diagnostic and therapeutic strategies. MPs are subcellular fragments or organelles that serve as carriers of lipids, adhesive receptors, cytokines, nucleic acids, and tissue-degrading enzymes that are unique to the parental cells. Their sub-micron sizes allow MPs to travel to areas that parental cells are unable to reach to exercise diverse biological functions. In this review, we summarize recent developments in identifying a casual role of MPs in the pathologies of TBI and suggest that MPs serve as a new class of therapeutic targets for the prevention and treatment of TBI and associated systemic complications.
Animals
;
Astrocytes
;
metabolism
;
pathology
;
Biological Transport
;
Blood Coagulation Factors
;
genetics
;
metabolism
;
Brain
;
metabolism
;
pathology
;
physiopathology
;
Brain Injuries, Traumatic
;
genetics
;
metabolism
;
pathology
;
physiopathology
;
Cell-Derived Microparticles
;
chemistry
;
metabolism
;
pathology
;
Cytokines
;
blood
;
genetics
;
Disease Models, Animal
;
Disseminated Intravascular Coagulation
;
genetics
;
metabolism
;
pathology
;
physiopathology
;
Gene Expression Regulation
;
Humans
;
Microglia
;
metabolism
;
pathology
;
Neurons
;
metabolism
;
pathology
;
Signal Transduction
8.Effect of curcumin on the injury in hippocampal neurons and the expression of RANTES in hippocamp during cerebral ischemia/ reperfusion in spontaneously hypertensive rats SHR.
Chen-Chen YU ; Han HU ; Xiao-Dan WANG ; Hong CAO ; Bin JI ; Jun LI
Chinese Journal of Applied Physiology 2014;30(4):360-367
OBJECTIVETo investigate the effect of curcumin on the injury in hippocampal neurons and the expression of regulated upon activation nonnal T-cell expressed and secreted (RANTES) in hippocamp during cerebral ischemia/reperfusion (I/R) in rats with spontaneous hypertension (SH).
METHODSMale Wistar-Kyoto (WKY) rats and spontaneous hypertension rats (SHR) were randomly divided into five groups (n = 6): sham group (W-Sham and S-Sham group), ischemia/reperfusion group (W-/R and S/R group), curcumin group (S-Cur group) . Each group was splitted into 5 subgroups of 3 h,12 h, 1 d, 3 d and 7 d according to the time interval before reperfusion. Global brain ischemia/reperfusion model was established by 4-VO method. Hematoxylin-eosin staining (HE staining) was used to observe the vertebral cell morphology in hippocampal CA1 region. Nissl staining was applied to detect the average density of cone cells in hippocampal CA1 region. The expression of RANTES in hippocamp was determined by ELISA. The behavior of the rats was evaluated at 7 days after reperfusion. Results: Compared with the sham group rats, the ability of learning and memory was significantly decreased in ischemia/reperfusion group rats, the number of injured neurons were greatly elevated , the protein expression levels of RANTES was significantly increased (P < 0.05). Compared with W-I/R group rats, the ability of learning and memory in S-I/R group rats was greatly reduced, the number of injured neurons increased extremely, the protein expression level of RANTES was significantly enhanced( P <0.05). The number of injured neurons declined significantly in S-Cur group rats, the ability to learn and remember of these rats was improved and the RANTES protein content decreased significantly (P < 0.05).
CONCLUSIONSHR are more susceptible to ischemia/reperfusion induced hippocampal neuronal injury which may be improved by curcu min. Its underlying mechanism is possibly associated with the inhibition of RANTES protein expression level.
Animals ; Brain Ischemia ; metabolism ; pathology ; physiopathology ; Chemokine CCL5 ; metabolism ; Cognition ; drug effects ; Curcumin ; pharmacology ; Hippocampus ; cytology ; metabolism ; pathology ; Hypertension ; metabolism ; pathology ; physiopathology ; Male ; Neurons ; drug effects ; metabolism ; pathology ; Rats ; Rats, Inbred SHR ; Rats, Inbred WKY ; Reperfusion Injury ; metabolism
9.Recent advances in treatment of glial scar-induced inhibition of nerve regeneration.
Jian-Xiang ZHANG ; Wei-Wei HU ; Zhong LIU
Journal of Zhejiang University. Medical sciences 2009;38(6):639-643
Glial scar formed by central nervous system (CNS) injury is the main inhibitory barrier of nerve regeneration. How to promote axonal regeneration after injury,how to accelerate neural network reconstruction and how to improve brain function recovery have become a hot problem to be solved in the field of neuroscience. This article focuses on the recent advances of therapeutic strategies for axonal regeneration.
Animals
;
Astrocytes
;
pathology
;
Brain Injuries
;
pathology
;
physiopathology
;
Cicatrix
;
prevention & control
;
Humans
;
Nerve Regeneration
;
Neuroglia
;
pathology
;
Neuronal Plasticity
;
physiology
;
Neurons
;
physiology
;
Proteoglycans
;
metabolism
;
Spinal Cord Injuries
;
pathology
;
physiopathology