1.Radioprotective effect of 1,2-propanediol combined with hepatocyte growth factor-modified dental pulp stem cell exosomes on human skin cells
Yun LIU ; Jiayan JIN ; Yubin LIU ; Qiang LI ; Boyuan REN ; He LIU ; Zuze WU ; Gangqiao ZHOU ; Jide JIN
Chinese Journal of Tissue Engineering Research 2024;28(13):2002-2008
BACKGROUND:Skin damage caused by radiation therapy and nuclear accidents is still a serious medical problem.It is difficult to achieve effective treatment results with single prevention and treatment methods.It is an important research direction to find new comprehensive treatment methods. OBJECTIVE:To observe the protective effect and the underlying mechanism of 1,2-propanediol combined with hepatocyte growth factor-modified exosomes derived from dental pulp stem cells on human epidermal radiation damage cell models. METHODS:(1)After infection of human dental pulp stem cells using recombinant adenovirus of human hepatocyte growth factor gene,exosomes,i.e.,Ad.HGF DPSC-Exo,were isolated with ultracentrifugation.(2)HaCat cells were irradiated with X-ray.The cells were treated with 1,2-propanediol before irradiation and Ad.HGF DPSC-Exo after irradiation.Cell proliferative activity was determined by CCK-8 assay.Cell apoptosis was detected by flow cytometry.Cell migration was detected by cell scratch assay.The expression levels of P21 and P53 were detected by PCR. RESULTS AND CONCLUSION:1,2-Propanediol,Ad.HGF.DPSC-Exo,Ad.HGF.DPSC-Exo + 1,2-propanediol could significantly improve the growth inhibition of HaCaT cells,reduce cell apoptosis,elevate cell proliferation and migration,and exhibit a good radiation protection effect.Moreover,the combined effect of Ad.HGF.DPSC-Exo + 1,2-propanediol was better.Furthermore,Ad.HGF.DPSC-Exo + 1,2-propanediol alleviated the cellular G2/M phase block and decreased the expression of cell cycle genes P53 and P21.In conclusion,1,2-propanediol pretreatment combined with Ad.HGF.DPSC-Exo had significant protective effects on radiation-induced HaCaT cell injury and it provided novel ideas and potential methods for the prevention and treatment of radiation-induced skin damage.