1.Cumulus-specific genes are transcriptionally silent following somatic cell nuclear transfer in a mouse model.
Guo-qing TONG ; Boon-chin HENG ; Soon-chye NG
Journal of Zhejiang University. Science. B 2007;8(8):533-539
This study investigated whether four cumulus-specific genes: follicular stimulating hormone receptor (FSHr), hyaluronan synthase 2 (Has2), prostaglandin synthase 2 (Ptgs2) and steroidogenic acute regulator protein (Star), were correctly reprogrammed to be transcriptionally silent following somatic cell nuclear transfer (SCNT) in a murine model. Cumulus cells of C57xCBA F1 female mouse were injected into enucleated oocytes, followed by activation in 10 micromol/L strontium chloride for 5 h and subsequent in vitro culture up to the blastocyst stage. Expression of cumulus-specific genes in SCNT-derived embryos at 2-cell, 4-cell and day 4.5 blastocyst stages was compared with corresponding in vivo fertilized embryos by real-time PCR. It was demonstrated that immediately after the first cell cycle, SCNT-derived 2-cell stage embryos did not express all four cumulus-specific genes, which continually remained silent at the 4-cell and blastocyst stages. It is therefore concluded that all four cumulus-specific genes were correctly reprogrammed to be silent following nuclear transfer with cumulus donor cells in the mouse model. This would imply that the poor preimplantation developmental competence of SCNT embryos derived from cumulus cells is due to incomplete reprogramming of other embryonic genes, rather than cumulus-specific genes.
Animals
;
Cyclooxygenase 2
;
genetics
;
Embryo, Mammalian
;
metabolism
;
Female
;
Gene Silencing
;
Glucuronosyltransferase
;
genetics
;
Hyaluronan Synthases
;
Male
;
Mice
;
Models, Animal
;
Nuclear Transfer Techniques
;
Phosphoproteins
;
genetics
;
Receptors, FSH
;
genetics
;
Transcription, Genetic
;
genetics
2.Extrapolating neurogenesis of mesenchymal stem/stromal cells on electroactive and electroconductive scaffolds to dental and oral-derived stem cells.
Boon Chin HENG ; Yunyang BAI ; Xiaochan LI ; Xuehui ZHANG ; Xuliang DENG
International Journal of Oral Science 2022;14(1):13-13
The high neurogenic potential of dental and oral-derived stem cells due to their embryonic neural crest origin, coupled with their ready accessibility and easy isolation from clinical waste, make these ideal cell sources for neuroregeneration therapy. Nevertheless, these cells also have high propensity to differentiate into the osteo-odontogenic lineage. One strategy to enhance neurogenesis of these cells may be to recapitulate the natural physiological electrical microenvironment of neural tissues via electroactive or electroconductive tissue engineering scaffolds. Nevertheless, to date, there had been hardly any such studies on these cells. Most relevant scientific information comes from neurogenesis of other mesenchymal stem/stromal cell lineages (particularly bone marrow and adipose tissue) cultured on electroactive and electroconductive scaffolds, which will therefore be the focus of this review. Although there are larger number of similar studies on neural cell lines (i.e. PC12), neural stem/progenitor cells, and pluripotent stem cells, the scientific data from such studies are much less relevant and less translatable to dental and oral-derived stem cells, which are of the mesenchymal lineage. Much extrapolation work is needed to validate that electroactive and electroconductive scaffolds can indeed promote neurogenesis of dental and oral-derived stem cells, which would thus facilitate clinical applications in neuroregeneration therapy.
Cell Differentiation
;
Mesenchymal Stem Cells/metabolism*
;
Neural Stem Cells/metabolism*
;
Neurogenesis
;
Tissue Scaffolds
3.Consensus Guidelines in Usage of Biologics in Dermatology during COVID-19 Pandemic: Biologic Advisory Group Malaysia
Steven Kim Weng Chow ; Siew Eng Choon ; Chan Lee Chin ; Noor Zalmy Azizan ; Pubalan Muniandy ; Henry Boon Bee Foong ; Agnes Yoke Hui Heng ; Benji Tze Yuen Teoh ; Felix Boon Bin Yap ; Wooi Chiang Tan ; Peter Wee Beng Ch&rsquo ; ng ; Kwee Eng Tey ; Latha Selvarajah ; Suganthi Thevarajah
Malaysian Journal of Dermatology 2020;45(2):2-10
The aim of this Biologic Advisory Group (BAG)
Malaysia consensus guideline is to provide
clinicians managing cutaneous diseases with
biologics relevant parameters to consider prior to
initiating or stopping or continuing any biologic
treatment in the current landscape of the COVID-19
pandemic. Besides reviewing the medical literatures
on COVID-19 and evidences related to other
human coronavirus or influenza, expert opinions
and clinical experiences are shared and debated in
formulation of this biologic consensus guideline.
4.Metformin can mitigate skeletal dysplasia caused by Pck2 deficiency.
Zheng LI ; Muxin YUE ; Boon Chin HENG ; Yunsong LIU ; Ping ZHANG ; Yongsheng ZHOU
International Journal of Oral Science 2022;14(1):54-54
As an important enzyme for gluconeogenesis, mitochondrial phosphoenolpyruvate carboxykinase (PCK2) has further complex functions beyond regulation of glucose metabolism. Here, we report that conditional knockout of Pck2 in osteoblasts results in a pathological phenotype manifested as craniofacial malformation, long bone loss, and marrow adipocyte accumulation. Ablation of Pck2 alters the metabolic pathways of developing bone, particularly fatty acid metabolism. However, metformin treatment can mitigate skeletal dysplasia of embryonic and postnatal heterozygous knockout mice, at least partly via the AMPK signaling pathway. Collectively, these data illustrate that PCK2 is pivotal for bone development and metabolic homeostasis, and suggest that regulation of metformin-mediated signaling could provide a novel and practical strategy for treating metabolic skeletal dysfunction.
Mice
;
Animals
;
Metformin/pharmacology*
;
Phosphoenolpyruvate Carboxykinase (ATP)/metabolism*
;
Gluconeogenesis/genetics*
;
Mice, Knockout
5.Structural and physiological changes of the human body upon SARS-CoV-2 infection.
Zhonglin WU ; Qi ZHANG ; Guo YE ; Hui ZHANG ; Boon Chin HENG ; Yang FEI ; Bing ZHAO ; Jing ZHOU
Journal of Zhejiang University. Science. B 2021;22(4):310-317
Since December 2019, the novel coronavirus (severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)) has spread to many countries around the world, developing into a global pandemic with increasing numbers of deaths reported worldwide. To data, although some vaccines have been developed, there are no ideal drugs to treat novel coronavirus pneumonia (coronavirus disease 2019 (COVID-19)). By examining the structure of the coronavirus and briefly describing its possible pathogenesis based on recent autopsy reports conducted by various teams worldwide, this review analyzes the possible structural and functional changes of the human body upon infection with SARS-CoV-2. We observed that the most prominent pathological changes in COVID-19 patients are diffuse alveolar damage (DAD) of the lungs and microthrombus formation, resulting in an imbalance of the ventilation/perfusion ratio and respiratory failure. Although direct evidence of viral infection can also be found in other organs and tissues, the viral load is relatively small. The conclusion that the injuries of the extra-pulmonary organs are directly caused by the virus needs further investigation.
COVID-19/physiopathology*
;
Human Body
;
Humans
;
Immune Evasion
;
Lung/virology*
;
Viral Load