1.Explainable paroxysmal atrial fibrillation diagnosis using an artificial intelligence-enabled electrocardiogram
Yeongbong JIN ; Bonggyun KO ; Woojin CHANG ; Kang-Ho CHOI ; Ki Hong LEE
The Korean Journal of Internal Medicine 2025;40(2):251-261
Background/Aims:
Atrial fibrillation (AF) significantly contributes to global morbidity and mortality. Paroxysmal atrial fibrillation (PAF) is particularly common among patients with cryptogenic strokes or transient ischemic attacks and has a silent nature. This study aims to develop reliable artificial intelligence (AI) algorithms to detect early signs of AF in patients with normal sinus rhythm (NSR) using a 12-lead electrocardiogram (ECG).
Methods:
Between 2013 and 2020, 552,372 ECG traces from 318,321 patients were collected and split into training (n = 331,422), validation (n = 110,475), and test sets (n = 110,475). Deep neural networks were then trained to predict AF onset within one month of NSR. Model performance was evaluated using the area under the receiver operating characteristic curve (AUROC). An explainable AI technique was employed to identify the inference evidence underlying the predictions of deep learning models.
Results:
The AUROC for early diagnosis of PAF was 0.905 ± 0.007. The findings reveal that the vicinity of the T wave, including the ST segment and S-peak, significantly influences the ability of the trained neural network to diagnose PAF. Additionally, comparing the summarized ECG in NSR with those in PAF revealed that nonspecific ST-T abnormalities and inverted T waves were associated with PAF.
Conclusions
Deep learning can predict AF onset from NSR while detecting key features that influence decisions. This suggests that identifying undetected AF may serve as a predictive tool for PAF screening, offering valuable insights into cardiac dysfunction and stroke risk.
2.Explainable paroxysmal atrial fibrillation diagnosis using an artificial intelligence-enabled electrocardiogram
Yeongbong JIN ; Bonggyun KO ; Woojin CHANG ; Kang-Ho CHOI ; Ki Hong LEE
The Korean Journal of Internal Medicine 2025;40(2):251-261
Background/Aims:
Atrial fibrillation (AF) significantly contributes to global morbidity and mortality. Paroxysmal atrial fibrillation (PAF) is particularly common among patients with cryptogenic strokes or transient ischemic attacks and has a silent nature. This study aims to develop reliable artificial intelligence (AI) algorithms to detect early signs of AF in patients with normal sinus rhythm (NSR) using a 12-lead electrocardiogram (ECG).
Methods:
Between 2013 and 2020, 552,372 ECG traces from 318,321 patients were collected and split into training (n = 331,422), validation (n = 110,475), and test sets (n = 110,475). Deep neural networks were then trained to predict AF onset within one month of NSR. Model performance was evaluated using the area under the receiver operating characteristic curve (AUROC). An explainable AI technique was employed to identify the inference evidence underlying the predictions of deep learning models.
Results:
The AUROC for early diagnosis of PAF was 0.905 ± 0.007. The findings reveal that the vicinity of the T wave, including the ST segment and S-peak, significantly influences the ability of the trained neural network to diagnose PAF. Additionally, comparing the summarized ECG in NSR with those in PAF revealed that nonspecific ST-T abnormalities and inverted T waves were associated with PAF.
Conclusions
Deep learning can predict AF onset from NSR while detecting key features that influence decisions. This suggests that identifying undetected AF may serve as a predictive tool for PAF screening, offering valuable insights into cardiac dysfunction and stroke risk.
3.Explainable paroxysmal atrial fibrillation diagnosis using an artificial intelligence-enabled electrocardiogram
Yeongbong JIN ; Bonggyun KO ; Woojin CHANG ; Kang-Ho CHOI ; Ki Hong LEE
The Korean Journal of Internal Medicine 2025;40(2):251-261
Background/Aims:
Atrial fibrillation (AF) significantly contributes to global morbidity and mortality. Paroxysmal atrial fibrillation (PAF) is particularly common among patients with cryptogenic strokes or transient ischemic attacks and has a silent nature. This study aims to develop reliable artificial intelligence (AI) algorithms to detect early signs of AF in patients with normal sinus rhythm (NSR) using a 12-lead electrocardiogram (ECG).
Methods:
Between 2013 and 2020, 552,372 ECG traces from 318,321 patients were collected and split into training (n = 331,422), validation (n = 110,475), and test sets (n = 110,475). Deep neural networks were then trained to predict AF onset within one month of NSR. Model performance was evaluated using the area under the receiver operating characteristic curve (AUROC). An explainable AI technique was employed to identify the inference evidence underlying the predictions of deep learning models.
Results:
The AUROC for early diagnosis of PAF was 0.905 ± 0.007. The findings reveal that the vicinity of the T wave, including the ST segment and S-peak, significantly influences the ability of the trained neural network to diagnose PAF. Additionally, comparing the summarized ECG in NSR with those in PAF revealed that nonspecific ST-T abnormalities and inverted T waves were associated with PAF.
Conclusions
Deep learning can predict AF onset from NSR while detecting key features that influence decisions. This suggests that identifying undetected AF may serve as a predictive tool for PAF screening, offering valuable insights into cardiac dysfunction and stroke risk.
4.Explainable paroxysmal atrial fibrillation diagnosis using an artificial intelligence-enabled electrocardiogram
Yeongbong JIN ; Bonggyun KO ; Woojin CHANG ; Kang-Ho CHOI ; Ki Hong LEE
The Korean Journal of Internal Medicine 2025;40(2):251-261
Background/Aims:
Atrial fibrillation (AF) significantly contributes to global morbidity and mortality. Paroxysmal atrial fibrillation (PAF) is particularly common among patients with cryptogenic strokes or transient ischemic attacks and has a silent nature. This study aims to develop reliable artificial intelligence (AI) algorithms to detect early signs of AF in patients with normal sinus rhythm (NSR) using a 12-lead electrocardiogram (ECG).
Methods:
Between 2013 and 2020, 552,372 ECG traces from 318,321 patients were collected and split into training (n = 331,422), validation (n = 110,475), and test sets (n = 110,475). Deep neural networks were then trained to predict AF onset within one month of NSR. Model performance was evaluated using the area under the receiver operating characteristic curve (AUROC). An explainable AI technique was employed to identify the inference evidence underlying the predictions of deep learning models.
Results:
The AUROC for early diagnosis of PAF was 0.905 ± 0.007. The findings reveal that the vicinity of the T wave, including the ST segment and S-peak, significantly influences the ability of the trained neural network to diagnose PAF. Additionally, comparing the summarized ECG in NSR with those in PAF revealed that nonspecific ST-T abnormalities and inverted T waves were associated with PAF.
Conclusions
Deep learning can predict AF onset from NSR while detecting key features that influence decisions. This suggests that identifying undetected AF may serve as a predictive tool for PAF screening, offering valuable insights into cardiac dysfunction and stroke risk.
5.Explainable paroxysmal atrial fibrillation diagnosis using an artificial intelligence-enabled electrocardiogram
Yeongbong JIN ; Bonggyun KO ; Woojin CHANG ; Kang-Ho CHOI ; Ki Hong LEE
The Korean Journal of Internal Medicine 2025;40(2):251-261
Background/Aims:
Atrial fibrillation (AF) significantly contributes to global morbidity and mortality. Paroxysmal atrial fibrillation (PAF) is particularly common among patients with cryptogenic strokes or transient ischemic attacks and has a silent nature. This study aims to develop reliable artificial intelligence (AI) algorithms to detect early signs of AF in patients with normal sinus rhythm (NSR) using a 12-lead electrocardiogram (ECG).
Methods:
Between 2013 and 2020, 552,372 ECG traces from 318,321 patients were collected and split into training (n = 331,422), validation (n = 110,475), and test sets (n = 110,475). Deep neural networks were then trained to predict AF onset within one month of NSR. Model performance was evaluated using the area under the receiver operating characteristic curve (AUROC). An explainable AI technique was employed to identify the inference evidence underlying the predictions of deep learning models.
Results:
The AUROC for early diagnosis of PAF was 0.905 ± 0.007. The findings reveal that the vicinity of the T wave, including the ST segment and S-peak, significantly influences the ability of the trained neural network to diagnose PAF. Additionally, comparing the summarized ECG in NSR with those in PAF revealed that nonspecific ST-T abnormalities and inverted T waves were associated with PAF.
Conclusions
Deep learning can predict AF onset from NSR while detecting key features that influence decisions. This suggests that identifying undetected AF may serve as a predictive tool for PAF screening, offering valuable insights into cardiac dysfunction and stroke risk.
6.Identification of Atrial Fibrillation With Single-Lead Mobile ECG During Normal Sinus Rhythm Using Deep Learning
Jiwoong KIM ; Sun Jung LEE ; Bonggyun KO ; Myungeun LEE ; Young-Shin LEE ; Ki Hong LEE
Journal of Korean Medical Science 2024;39(5):e56-
Background:
The acquisition of single-lead electrocardiogram (ECG) from mobile devices offers a more practical approach to arrhythmia detection. Using artificial intelligence for atrial fibrillation (AF) identification enhances screening efficiency. However, the potential of singlelead ECG for AF identification during normal sinus rhythm (NSR) remains under-explored.This study introduces a method to identify AF using single-lead mobile ECG during NSR.
Methods:
We employed three deep learning models: recurrent neural network (RNN), long short-term memory (LSTM), and residual neural networks (ResNet50). From a dataset comprising 13,509 ECGs from 6,719 patients, 10,287 NSR ECGs from 5,170 patients were selected. Single-lead mobile ECGs underwent noise filtering and segmentation into 10-second intervals. A random under-sampling was applied to reduce bias from data imbalance. The final analysis involved 31,767 ECG segments, including 15,157 labeled as masked AF and 16,610 as Healthy.
Results:
ResNet50 outperformed the other models, achieving a recall of 79.3%, precision of 65.8%, F1-score of 71.9%, accuracy of 70.5%, and an area under the receiver operating characteristic curve (AUC) of 0.79 in identifying AF from NSR ECGs. Comparative performance scores for RNN and LSTM were 0.75 and 0.74, respectively. In an external validation set, ResNet50 attained an F1-score of 64.1%, recall of 68.9%, precision of 60.0%, accuracy of 63.4%, and AUC of 0.68.
Conclusion
The deep learning model using single-lead mobile ECG during NSR effectively identified AF at risk in future. However, further research is needed to enhance the performance of deep learning models for clinical application.